| 研究生: |
黃鈺庭 Huang, Yu-Ting |
|---|---|
| 論文名稱: |
雷射切割玻璃之熱應力分析 Thermal Stress Analysis of Laser Cutting on the Glass |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 共同指導教授: |
屈子正
Chiu, Tz-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 雷射切割玻璃製程 、皮秒雷射 、CO2雷射 、熱應力 |
| 外文關鍵詞: | Laser glass cutting, Picosecond laser, CO2 laser, Thermal stress |
| 相關次數: | 點閱:118 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要針對皮秒雷射劃線搭配 CO2 雷射切割之方法進行探討,藉由統整應力試驗、模擬數據以及實際實驗之結果,找出能切割成功的上下應力臨界門檻,並探究此範圍外會導致切割失敗之原因,以期減少測試的成本,透過模擬便可推測切割成功與否。在皮秒雷射刻劃切割線方面,同計畫的夥伴透過對改質前後的玻璃進行各種應力試驗及模擬分析,彙整後得出皮秒雷射改質後玻璃破裂所需的應力強度,即欲使 CO2 雷射切割成功的最小應力臨界值;另外,我們再由模擬 CO2 雷射切割的情況,觀察於切割過程中玻璃內部的溫度場及應力場變化,並與工研院夥伴實際實驗的結果相互驗證,發現應力臨界門檻的最大臨界值;綜上所述可以整理出玻璃可破裂的應力大小應介於 30~70 MPa 之間。
於應力場方面,藉由觀察最大主應力的分佈,合理推論出此製程中熱應力導致玻璃破裂的物理機制。再由模擬中對雷射參數:光斑尺寸、功率和移動速率進行調整,歸納並進行定量分析,找出雷射參數變化對結果造成的影響。除此之外,由溫度場的變化中可推導出一適用於此製程的熱擴散公式,並以結果驗證其可行性,接著以此計算式及熱傳概念建立用以預測最大溫差之數學模型,再續以熱膨脹之物理概念推論出最大主應力預測模型,其中我們發現最大溫差以及最大應力會與?成正比,與?^3/2、?^1/2成反比。
目標於利用雷射參數即可以推導之數學模型有效地預測出雷射產生的熱應力大小,並配合玻璃破裂之應力門檻,便只需要透過數學計算即可知曉雷射切割的成功性,除此之外,亦可以藉此方式提升製程的效率。
In this study, we analyze a process of laser glass cutting, in which the glass first is scribed with periodic micro holes by a picosecond laser, and then split by a CO2 laser. In particular, the thermal stress associated with the heating of the CO2 laser is numerically calculated. Especially, the distribution of the maximum principal stress in the glass is examined because it is the major physical mechanism that splits the glass. The objective is to determine the most efficient combination of system parameters that can be used to complete the process, by combining our numerical results with the results of the residual stress due to material modification in the glass by the picosecond laser, which our collaborators help provide. The aforementioned system parameters include the laser spot diameter D, power P, and cutting speed v, and their effects on the maximum principal stress in the glass are systematically studied in this work. In addition to purely numerical computations, a scale analysis also is carried out here, which indicates that the maximum temperature difference and maximum principal stress in the glass both are proportional to P, and inversely proportional to D^3/2 and v^1/2 within the range of laser parameters used in the experimental process, where P is less than 150 W, v is 7 ~ 300 mm/s, and D is 1.0 ~ 4.0 mm. Moreover, these scaling laws correlate the numerical results very well. In addition, the upper and lower critical stress thresholds of 30 MPa and 70 MPa between which the glass can be successfully split, as observed in experiments, are confirmed by the numerical results obtained in this work and that provided by our collaborators.
[1] “Display Glass Technology: Thin-Film Transistor (TFT) Liquid Display Glass Substrate Technology,” Corning. [Online]. Available: https://www.corning.com/worldwide/en/products/display-glass.html. [Accessed: 24-Feb-2021].
[2] L. Li and M. A. Sheikh, “Laser Glass Cutting Techniques - A Review,” Journal of Laser Applications, vol. 25, no. 4, 2013, doi: 10.2351/1.4807895.
[3] M. Udrea, A. Alacakir, A. Esendemir, O. Kusdemir, O. Pervan, and S. Bilikmen, Small Power Pulsed and Continuous Longitudinal CO2 Laser for Material Processing (SIOEL: Sixth Symposium of Optoelectronics). SPIE, 2000, doi: 10.1117/12.378741.
[4] R. R. Gattass and E. Mazur, “Femtosecond Laser Micromachining in Transparent Materials,” Nature Photonics, vol. 2, no. 4, pp. 219-225, 2008, doi: 10.1038/nphoton.2008.47.
[5] R. M. Lumley, “Controlled Separation of Brittle Materials Using a Laser,” American Ceramic Society Bulletin, vol. 48, no. 9, pp. 850-854, 1969.
[6] C. Hermanns, Laser cutting of glass (International Symposium on Optical Science and Technology). SPIE, 2000, doi: 10.1117/12.405287.
[7] F. J. Grove, D. C. Wright, and F. M. Hamer, “Cutting of Glass with a Laser Beam,” United States Patent 3,543,979, Dec. 1, 1970.
[8] S. Kang and J. Shin, “Experimental Investigation on the CO2 Laser Cutting of Soda-lime Glass,” Journal of Mechanical Science and Technology, vol. 34, no. 8, pp. 3345-3351, 2020, doi: 10.1007/s12206-020-0727-x.
[9] V. S. Kondratenko, “Method of Splitting Non-metallic Matrials,” United States Patent 5,609,284, Mar. 11, 1997.
[10] H. Ostendarp, C. Hermanns, J. Stein, G. Geissler, R. Steinfartz, B. Hoetzel, and A. Blunck, “Method and Apparatus for Cutting Through a Flat Workpiece Made of Brittle Material, Especially Glass,” United States Patent 5,984,159, Nov. 16, 1998.
[11] K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Three-dimensional Thermal Stress Analysis on Laser Scribing of Glass,” Precision Engineering, vol. 32, no. 4, pp. 301-308, 2008, doi: 10.1016/j.precisioneng.2007.10.004.
[12] K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Crack Propagation in Glass by Laser Irradiation Along Laser Scribed Line,” Journal of Manufacturing Science and Engineering, vol. 131, no. 5, 2009, doi: 10.1115/1.3207739.
[13] N. Paterson, A. Tawn, K. Williams, and A. D. Nurse, “On the numerical modelling of laser shearing of glass sheets used to optimize production methods, ” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 218, no. 1, pp. 1-11, 2004, doi: 10.1243/095440604322786901.
[14] C. H. Tsai and C. S. Liou, “Applying an On-line Crack Detection Technique for Laser Cutting by Controlled Fracture,” The International Journal of Advanced Manufacturing Technology, vol. 18, no. 10, pp. 74-730, 2001, doi: 10.1007/s001700170015.
[15] C. H. Tsai and C. S. Liou, “Fracture Mechanism of Laser Cutting with Controlled Fracture,” Journal of Manufacturing Science and Engineering, vol. 125, no. 3, pp. 519-528, 2003, doi: 10.1115/1.1559163.
[16] M. Ikeda, T. Shibata, E. Makino, Y. Takahashi, A. Ono, and F. Matsumoto, "Study on Laser Breaking of Glass Plate (1st Report) Generation and Growth of Vertical Cracks by Scribing," Journal of the Japan Society for Precision Engineering, vol. 62, no. 3, pp. 413-417, 1996, doi: 10.2493/jjspe.62.413.
[17] M. Ikeda, T. Shibata, E. Makino, Y. Takahashi, and H. Koshida, "Study on Laser Breaking of Glass Plates. (2nd Report). The optimum CO2 laser beam irradiating condition," Journal of the Japan Society for Precision Engineering, vol. 66, pp. 213-217, 02/01 2000, doi: 10.2493/jjspe.66.213.
[18] F. Ahmed, M.-S. Lee, H. Sekita, T. Sumiyoshi, and M. Kamata, "Display glass cutting by femtosecond laser induced single shot periodic void array," Applied Physics A, vol. 93, pp. 189-192, 10/01 2008, doi: 10.1007/s00339-008-4672-2.
[19] Z. Tu, Y. Teng, J. Zhou, S. Zhou, H. Zeng, and J. Qiu, “Raman Spectroscopic Investigation on Femtosecond Laser Induced Residual Stress and Element Distribution in Bismuth Germanate Glasses,” Journal of Raman Spectroscopy, vol. 44, pp. 307-311, 2013, doi: 10.1002/jrs.4175.
[20] M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of Heat-modification Inside a Glass After Irradiation with High-repetition Rate femtosecond Laser Pulses,” Journal of Applied Physics, vol. 108, no. 7, 2010, doi: 10.1063/1.3483238.
[21] T. Y. Lee, “Analysis of Residual Stress in Ultra-thin Glass Modified with Picosecond Laser,” M.S. thesis, National Cheng Kung University, Tainan, 2018.
[22] G. D. Chen, “Investigation into Laser Peeling Mechanism of Ultra-thin Glass Through Analysis of Transient Temperature Distribution,” M.S. thesis, National Cheng Kung University, Tainan, 2013.
[23] S. Q. Lin, “A Study on the Correlation Between Process Parameters and Thermal Characteristics of Laser Glass Splitting,” M.S. thesis, National Cheng Kung University, 2017.
[24] D. J. Garibotti, “Dicing of Micro-semiconductors,” United States Patent 3,112,850, Dec. 3, 1963.
[25] G. K. Chui, “Laser Cutting of Hot Glass, Ceramic Tile,” (in English), American Ceramic Society bulletin, vol. 57, pp. 514-518, 1975.
[26] J. N. Dekker and M. H. Zonneveld, “Thermal Severing. The Cutting of Brittle Materials by Thermally Induced Fracture,” in Advances in Fracture Research Proc 7th International Conference on Fracture, Pergamon, Houston, TX, USA, 1989, pp. 2825–2834.
[27] I. Black, “Laser Cutting of Decorative Glass, Ceramic Tile,” (in English), American Ceramic Society bulletin, vol. 77, pp. 53-57, 1998.
[28] H. Tönshoff, A. Ostendorf, C. Kulik, H. Hesener, and O. Haupt, “Final Glass Products in one Processing Step by the Means of Laser Radiation,” in 22nd International Congress on Laser Materials Processing and Laser Microfabrication, Jacksonville, FL, USA, 2003, p. M110, doi: 10.2351/1.5060101.
[29] B. Hoekstra, "Advanced Glass Separation (Laser Cutting)," in Display Works 99 Manufacturing Technology Conference, San Jose, CA, USA, 1999, pp. 37-41.
[30] G. M. Bartenev, “Investigation of Glass Hardening,” Journal of Technical Physics, vol. 19, pp. 1423-1433, 1949.
[31] A. L. Zijlstra and A. J. Burggraaf, “Fracture Phenomena and Strength Properties of Chemically and Physically Strengthened Glass: I. General Survey of Strength and Fracture Behaviour of Strengthened Glass,” Journal of Non-Crystalline Solids, vol. 1, no. 1, pp. 49-68, 1968, doi: 10.1016/0022-3093(68)90006-9.
[32] A. K. Varshneya, “Chemical Strengthening of Glass: Lessons Learned and Yet To Be Learned,” International Journal of Applied Glass Science, vol. 1, no. 2, pp. 131-142, 2010, doi: 10.1111/j.2041-1294.2010.00010.x.
[33] G. M. Bartenev and A. I. Kolbasnikova, “Effect of Chemical Composition of Glass on Its Tempering,” Glass and Ceramics, vol. 14, no. 3, pp. 75-80, 1957.
[34] M. J. Kerper and T. G. Scuderi, “Mechanical Properties of Chemically Strengthened Glasses at High Temperatures,” Journal of the American Ceramic Society, vol. 49, no. 11, pp. 613-618, 1966, doi: 10.1111/j.1151-2916.1966.tb13179.x.
[35] V. A. Glass, “Heat Strengthened vs. Tempered Glass,” Glass Education Center. [Online]. Available: http://glassed.vitroglazings.com/topics/heat-strengthened-vs-tempered-glass. [Accessed: 16-Mar-2021].
[36] S. Park, Y. Kim, J. You, and S.-W. Kim, "Damage-free Cutting of Chemically Strengthened Glass by Creation of Sub-surface Cracks Using Femtosecond Laser Pulses," CIRP Annals, vol. 66, no. 1, pp. 535-538, 2017/01/01/ 2017, doi: 10.1016/j.cirp.2017.04.071.
[37] K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved Laser Glass Cutting by Spatio-temporal Control of Energy Deposition Using Bursts of Femtosecond Pulses,” Optics Express, vol. 25, no. 26, 2017, doi: 10.1364/oe.25.033271.
[38] Y. C. Yeh, ITRI Cooperation Research Plan, 2021.
[39] The Japan Society of Mechanical Engineering, JSME Data Book Heat Transfer, 5th ed., Tokyo: Maruzen Company, 2009.
[40] E. B. Shand, Glass Engineering Handbook, 2nd ed., New York: McGraw-Hill, 1958.
[41] N. Watanabe, Glass Engineering Handbook, Tokyo: Asakura Shoten, 1999.
校內:2026-09-08公開