簡易檢索 / 詳目顯示

研究生: 徐蒂珈
Hsu, Ti-chia
論文名稱: N維齊次轉換之尤拉表示法
Euler Angles Representation of N-dimemsional Homogeneous Transformation
指導教授: 王清正
Wang, Ching-Cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造工程研究所
Institute of Manufacturing Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 33
中文關鍵詞: 尤拉表示法齊次轉換矩陣齊次座標旋轉矩陣
外文關鍵詞: Euler angles, N-dimensional homogeneous transform, matrix representation
相關次數: 點閱:98下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在二維(2-Dimension)卡氏座標系統(Cartesian coordinate system)中,座標系統經過平移及旋轉之變換後,其相對於原座標系統之轉換關係,可經由幾何圖形推算兩座標系統間之轉換關係,同理;三維(3-Dimension)卡氏座標系統經過平移及旋轉之變換後,相對於原座標系統之轉換關係,亦可經幾何圖形推算兩座標系統間之轉換關係。
    然而,N維(N 4)座標系統無經由幾何圖形來推算兩座標系統間的轉換關係,因此,藉由二維旋轉轉換公式作為理論基礎,配合以矩陣表示平面間之交集,推導N維座標之旋轉。此外齊次座標系統中之齊次轉換矩陣,將平移及旋轉視為仿射轉換(Affine transformations),且其矩陣的維度與齊次座標維度相同,因此可將旋轉及平移之兩種變化,同時以齊次轉換矩陣表示,進而推算N維座標系統轉換後之座標位置,即將原座標系統之座標位置以齊次座標系統表示後,乘上齊次轉換矩陣後可得。
    此外,推導出之N維轉換矩陣可應用於幾何圖形上之旋轉與平移,本研究以橢圓為例,將橢圓以參數式表示法,配合轉換矩陣,可得經平移及旋轉後之橢圓參數式。

    In the two-dimensional space, a Cartesian coordinate system might be transformed into another Cartesian coordinate system by rotations and translations, and their relation can be calculated via the geometric graph. Similarly, that kind of relationship in the three-dimensional space can also be calculated via the geometric graph. On the other hand, the geometric graph in the N-dimensional space cannot be visual as long as N is greater than three. Consequently, transformation relations among N-dimensional coordinate systems cannot be calculated via the geometric graph. For this reason, we set out to derive the relation between two coordinate systems by utilizing the two-dimensional transformation matrices as the basic component. When the transformation matrices in homogeneous coordinate system, the translations and rotations can be taken for an affine transformation where the dimensional size of those matrices is equal to the size of the homogeneous coordinate system. Therefore, the translations and rotations can be expressed by homogeneous matrices. Additionally, the N-dimensional homogeneous transformation matrix can be readily applied to represent 2nd-order (N-1)-dimensional space curves in the N-dimension space such as hyper-ellipses. geometric graphs which are after rotation and translation. For illustration, parametric expressions of an ellipse in various transformed coordinate systems are presented in this thesis, where the final parametric expressions of ellipses are obtained via multiplying the rotation matrix and followed by adding the position vector.

    摘要 Ⅰ ABSTRACT Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 第1章 緒論 1 1.1 研究動機 1 1.2 研究背景 1 1.3 研究目的 4 第2章 文獻探討 5 2.1 齊次座標之原理與應用 5 2.2 齊次轉換矩陣表示法 6 2.3 矩陣表示法之介紹 9 2.3.1 點與點矩陣矩陣之表示法 9 2.3.2 超平面與超平面矩陣之表示法 10 2.4 其他相關定理之介紹 10 2.4.1 對偶定理(Duality theorem) 10 2.4.2 仿射轉換(Affine transformation) 11 第3章 齊次轉換矩陣推導原理及應用 12 3.1齊次轉換矩陣推導之流程及原理 12 3.1.2推導原理 12 3.1.1推導流程 13 3.2 程式及應用範例 14 3.2.1 程式內容概要 14 3.2.2 程式執行結果 24 3.2.3 二維轉換矩陣應用於橢圓之理論及範例 27 第4章 結論 32 參考文獻 33

    [1]晉茂林,2000 “機器人學,”五南

    [2]張錚,2002, “Matlab教學範本程式設計與應用,”知城數位

    [3] Ayres, F. Jr., 1962, “Matrices, Schaum's Outline Series,” New York.

    [4] Craig, John J., 1989, “Introduction to robotics: mechanics and control,” Wiley.

    [5] Friedberg, Stephen H., Insel, Arnold J., and Spence, Lawrence E., 1979, “Linear algebra,” Pearson Education.

    [6] Fishback, W.T., 1969, “Projective and Euclidean Geometry,” John Wiley & Sons, New York.

    [7]Gerald, W. Recketenwald.,2000, “Numerical Methods with Matlab Implementation Application, ” Prentice-Hall.

    [8] Halmos, P.R., 1958, “Finite-Dimensional Vector Spaces,” Van Nostrand, New York.

    [9] Hoffman, Kenneth, and Kunze, Ray Alden, 1971, “Linear algebra,” Prentice-Hall.

    [10] Roberts, L.G., “Homogeneous Matrix Representation and Manipulation of N-dimensional Constructs,” MIT Lincoln Laboratory, MS 1405, May 1965.

    [11] Rorres, Chris, and Anton, Howard, 1984, “Applications of linear algebra,” Wiley.

    [12] Tevelev, E. A., 2005, “Projective duality and homogeneous spaces,” Springer.

    下載圖示 校內:2008-08-16公開
    校外:2008-08-16公開
    QR CODE