| 研究生: |
張智能 Chang, Chich-Neng |
|---|---|
| 論文名稱: |
利用熱裂解法同步控制三元性 M-Fe-O 金屬氧化物奈米粒子的結晶相與形狀 A thermolysis approach to simultaneously achieve crystal phase- and shape-control of ternary M-Fe-O metal oxide nanoparticles |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 奈米粒子 、三元性 、尼爾 、熱裂解 、磁鐵礦 |
| 外文關鍵詞: | nanoparticles, ternary, Néel, thermolysis, ferrite |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於M-Fe-O(M= Mn和Co)奈米粒子的合成,如何調控M-Fe-O奈米粒子形狀和結構(結晶相)的合成策略是相當具有挑戰性。在本篇研究中,我們發展出一種新的合成方法,利用二步驟升溫或三步驟升溫的方式去調控M-Fe-O奈米粒子的形狀和結構,可以選擇性的得到氯化鈉形態(還原形態)或尖晶石形態(氧化形態)的結構,M-Fe-O奈米產物也有很高的再現性。利用二步驟升溫過程能夠控制兩種結晶相的形成,經由空氣環境下反應過程,可形成熱力學穩定的尖晶石型態奈米方塊,或是經由氮氣環境下反應過程,可形成動力學控制的氯化鈉型態奈米方塊;另一方面,利用三步驟升溫的方式,反應於空氣環境下進行,可以得到熱力學穩定的尖晶石型M-Fe-O奈米粒子,形狀為截面八面體。
本研究發展一種簡單且有效率的磁性奈米材料合成策略,反應物固定使用Fe(acac)3做為M-Fe-O奈米粒子的鐵源,搭配外來金屬M (M=Mn (Mn(ac)2和Mn(acac)2)和Co (Co(ac)2和Co (Co(acac)2))與Fe(acac)3反應,將兩種金屬前驅物分別加入到油酸(oleic acid)和三辛胺(trioctylamine)的混合溶液中進行高溫裂解反應,製備出Mn-Fe-O和Co-Fe-O三元性鐵系氧化物磁性奈米粒子。製作三元性鐵系氧化物系列的反應系統中,反應過程將決定形成產物的結構和形狀,例如溶劑、保護劑(比如是油酸、油胺等等)、金屬的來源、升溫速率和反應溫度等條件,每一項參數皆扮演了一定的角色。研究結果指出:低溫的條件下,反應產物由尖晶石結構組成(熱力學穩定的產物),磁性奈米顆粒的形狀為截面八面體。過去研究指出,油酸分子常作為控制形狀或當作穩定劑的角色,但我們研究發現油酸分子可以做為調控M-Fe-O奈米粒子結晶相的試劑,可選擇性的得到氯化鈉形態或尖晶石形態的結構,使得磁性M-Fe-O奈米粒子的磁行為可以被調控。
Significant studies have achieved beautiful control in particle size, while the shape- and phase-control synthesis of nanoparticles remains an open challenge. In this study, we have developed a generalized methodology to selectively prepare either a NaCl-type (reduced form) or spinel-type ferrite (oxidized form) M-Fe-O (M = Mn, Co) crystallites with high reproducibility. A two-step heating process was able to control formation of two types of crystal phase, either a thermodynamic spinel-type under air or a kinetic-control of NaCl-type (rock salt structure) under Ar in cubic morphology. On the other hand, the three-step heating procedure in air obtained the spinel-type with a thermodynamic equilibrium octahedral shape exclusively. Either using metal acetates (M(ac)2), or metal acetylacetonates (M(acac)2) as the starting precursors (M = Mn, Co) can be introduced to prepare NaCl-type (reduced form) or spinel-type ferrite (oxidized form) crystallites with identical experimental parameters, including precursor concentration, reaction temperature, reaction time, and heating rate. The oleic acid molecule, reaction temperature, and heating rate employed in the synthesis were carefully examined and found acting as determined roles behind the reaction processes. Apart from the previous literature reports as shape-directed and/or stabilizing agents, the oleic acid molecule played an additional phase-tuning role.
1. http://nano.nstm.gov.tw/ 國立科學工藝博物館 奈米新世界
2. R. C. C. Costa, M.F.F. Lelis, L.C.A. Oliveira, J.-D. Fabris, J.- D.Ardisson, R. R. V. A. Rios, C. N. Silva, R.-M. Lago, “Novel active heterogeneous Fenton system based on Fe3−xMxO4 (Fe, Co, Mn, Ni): The role of M2+ species on the reactivity towards H2O2 reactions,” J. Hazard. Mater. 129, 171–178, 2006.
3. Y.-w. Jun, J.-H. Lee, J. Cheon, “Chemical Design of Nanoparticle Probes for High-Performance Magnetic Resonance Imaging,” Angew. Chem. Int. Ed. 47, 5122–5135, 2008.
4. A. F. Puntes, K. M. Krishnan, A. P. Alivisatos, “Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt,” Science, 291, 2115, 2001.
5. S. Sun, C. B. Murray, “Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices,” J. Apprl. Phys. 85, 4325, 1999.
6. 張煦,李學養, “磁性物理學”, 1982。
7. 生醫奈米科技教學資源中心 主編,“生醫奈米技術”,18–26,2007。
8. J. Nogues, I. K. Schuller, “Exchange bias,” J. Magn. Mag. Mater. 192, 203, 1999.
9. X. Gao, S. R. Dave, “Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology,” Nanomed Nanobiotechnol 1, 583–609, 2009.
10. R. M. Cornell and U. Schwertmann, “The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses,” VCH, Weinheim and New York, 2003.
11. A. Navrotsky, C. Ma, K. Lilova, N. Birkner, “Nanophase Transition Metal Oxides Show Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria, ” Science 330, 199–201, 2010.
12. J. Park, E. Lee, N.-M. Hwang, M. Kang, S. C. Kim, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, T. Hyeon, “One-Nanometer-Scale Size-Controlled Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles,” Angew. Chem. Int. Ed. 44, 2872–2877, 2005.
13. Y. Piao, J. Kim, H. B. Na, D. Kim, J. S. Baek, M. K. Ko, J. H. Lee, M. Shokouhimehr, T. Hyeon, “Wrap–bake–peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules,” Nat. Mater. 7, 242–247, 2008.
14. J. Cheon, N.-J. Kang, S.-M. Lee, J.-H. Lee, J.-H. Yoon, S. J. Oh, “Shape Evolution of Single-Crystalline Iron Oxide Nanocrystals,” J. Am. Chem. Soc. 126, 1950–1951, 2004.
15. P. C. Wu, W. S. Wang, Y. T. Huang, H. S. Sheu, Y. W. Lo, T. L. Tsai, D.B. Shieh, C. S. Yeh, “Porous Iron Oxide Based Nanorods Developed as Delivery Nanocapsules,” J. Chem. Eur. 13, 3878–3885, 2007.
16. P. Guardia, N. Pérez, A. Labarta, X. Batlle, “Controlled Synthesis of Iron Oxide Nanoparticles over a Wide Size Range,” Langmuir 26, 5843–5847, 2010.
17. A. K. Gupta, M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials 26, 3995–4021, 2005.
18. Y. Hou, Z. Xu, S. Sun, “Controlled Synthesis and Chemical Conversions of FeO Nanoparticles,” Angew. Chem. Int. Ed. 46, 6329–6332, 2007.
19. C.-J. Chen, R.-K. Chiang, H.-Y. Lai, C.-R. Lin, “Characterization of Monodisperse Wüstite Nanoparticles following Partial Oxidation,” J. Phys. Chem. C 114, 4258–4263, 2010.
20. J.-t. Jang, H. Nah, J.-H. Lee, S. H. Moon, M. G. Kim, J. Cheon, “Critical Enhancements of MRI Contrast and Hyperthermic Effects by Dopant-Controlled Magnetic Nanoparticles,” Angew. Chem. Int. Ed. 48, 1234–1238, 2009.
21. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, “Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles,” J. Am. Chem. Soc. 126, 273–279, 2004.
22. H. Zeng, P. M. Rice, S. X. Wang, S. Sun, “Shape-Controlled Synthesis and Shape-Induced Texture of MnFe2O4 Nanoparticles,” J. Am. Chem. Soc. 126, 11458–11459, 2004.
23. H. Yang, C. Zhang, X. Shi, H. Hu, X. Du, Y. Fang, Y. Ma, H. Wu, S. Yang, “Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging,” Biomaterials 31, 3667–3673, 2010.
24. D. Choi, A. Han, J. P. Park, J. K. Kim, J. H. Lee,T. H. Kim, S.-W. Kim, “Fabrication of MnxFe1–xO Colloidal Solid Solution as a Dual Magnetic-Resonance-Contrast Agent,” Small 5, 571–573, 2009.
25. T. Yu, D. Y. Kim, H. Zhang, Y. Xia, “Platinum Concave Nanocubes with High-Index Facets and Their Enhanced Activity for Oxygen Reduction Reaction,” Angew. Chem. Int. Ed. 50, 2773 –2777, 2011.
26. J. Zhang, M. R. Langille, M. L. Personick, K. Zhang, S. Li, C. A. Mirkin, “Concave Cubic Gold Nanocrystals with High-Index Facets,” J. Am. Chem. Soc. 132, 14012–14014, 2010.
27. Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, “Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? ,” Angew. Chem. Int. Ed. 48, 60–103, 2009.
28. C.-C. Huang, K.-Y. Chuang, C.-P. Chou, M.-T. Wu, H.-S. Sheu, D.-D. Shieh, C.-Y. Tsai, C.-H. Su, H.-Y. Lei, C.-S. Yeh, “Size-control synthesis of structure deficient truncated octahedral Fe3-δO4 nanoparticles: high magnetization magnetites as effective hepatic contrast agents,” J. Mater. Chem. 21, 7472–7479, 2011.
29. R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, T. Kipp, R. Cingolani, P. D. Cozzoli, “Nonhydrolytic Synthesis of High-Quality Anisotropically Shaped Brookite TiO2 Nanocrystals,” J. Am. Chem. Soc. 130, 11223–11233, 2008.
30. Z.-Y Jiang, Q. Kuang, Z.-X. Xie, L.-S. Zheng, “Syntheses and Properties of Micro/Nanostructured Crystallites with High-Energy Surfaces,” Adv. Funct. Mater. 20, 3634–3645, 2010.
31. H. Zeng, P. M. Rice, S. X. Wang, S. Sun, “Shape-Controlled Synthesis and Shape-Induced Texture of MnFe2O4 Nanoparticles,” J. Am. Chem. Soc. 126, 11458–11459, 2004.
32. J.-H. Lee, Y.-M. Huh, Y.-w. Jun, J.-w. Seo, J.-t. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh, J. Cheon, “Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging,” Nat. Medicine 13, 95–99, 2007.
33. Q. Song, Y. Ding, Z. L. Wang, Z. J. Zhang, “Tuning the Thermal Stability of Molecular Precursors for the Nonhydrolytic Synthesis of Magnetic MnFe2O4 Spinel Nanocrystals,” Chem. Mater. 19, 4633–4638, 2007.
34. E. Kang, J. Park, Y. Hwang, M. Kang, J.-G. Park, T. Hyeon, “Direct Synthesis of Highly Crystalline and Monodisperse Manganese Ferrite Nanocrystals,” J. Phys. Chem. B 108, 13932–13935, 2004.
35. N. Bao, L. Shen, Y. Wang, P. Padhan, A. Gupta, “A Facile Thermolysis Route to Monodisperse Ferrite Nanocrystals,” J. Am. Chem. Soc. 129, 12374–12375, 2007.
36. K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang, Y.-F. “Han, Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts,” Catal. Today 131, 477–482, 2008.
37. S. J. Roosendaal, B. van Asselen, J. W. Elsenaar, A. M. Vredenberg, F. H. P. M. Habraken, “The oxidation state of Fe(100) after initial oxidation in O2,” Surf, Sci. 442, 329–337, 1999.
38. Guilherme V. M. Jacintho, Alexandre G. Brolo, Paola Corio, Paulo A. Z. Suarez, Joel C. Rubim, “Structural Investigation of MFe2O4 (M = Fe, Co) Magnetic Fluids,” J. Phys. Chem. C 113, 7684–7691, 2009.
39. S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J.-G. Park, T. Hyeon, “Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by “Heating-Up” Process,” J. Am. Chem. Soc. 129, 12571–12584, 2007.
40. P. Guardia, J. Pérez-Juste, A. Labarta, X. Batlle, L. M. Liz-Marzán, “Heating rate influence on the synthesis of iron oxide nanoparticles: the case of decanoic acid,” Chem. Commun. 46, 6108–6110, 2010.
校內:2013-07-29公開