簡易檢索 / 詳目顯示

研究生: 王笙容
Wang, Sheng-Jung
論文名稱: 配位中空硫化銅奈米粒子於近紅外光照射下的超音波影像與光熱治療
Coordinating Hollow CuS Nanospheres for Near-Infrared Light Triggering Enhanced Ultrasound Imaging and Photothermal Therapy
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 96
中文關鍵詞: 金屬-配位子硫化銅奈米殼層超音波近紅外光
外文關鍵詞: metal-ligand, copper sulfide, nanoshell, ultrasound, near-infrared
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硫化銅具有良好的生物相容性與光熱轉換效率,近年來陸續發表了許多硫化銅結合診斷與治療的相關文獻。卻鮮少有結合硫化銅奈米粒子與超音波影像的研究。超音波具有及時偵測、非侵入性、風險低且治療過程不會使病人感到不舒服等優點,且已被廣泛地使用於臨床診斷。大部分的超音波顯影劑可藉由裝載易揮發性的液體或者是氣體微泡的方式增強超音波影像,但親水性的中空硫化銅奈米粒子不適合裝載此類疏水性的液體或氣體。故本篇研究中,我們以金屬-配位子的配位方式,使親水性的中空硫化銅奈米粒子具有氣體產生的能力,進而產生超音波影像。首先,先合成實心的氧化亞銅奈米粒子,藉由非典型的克肯達效應 (modified-Kirkendall effect),使實心結構的氧化亞銅經硫化後,產生中空的硫化銅奈米粒子。接著再以三價鐵離子做為金屬配位中心,將3,4-二羥基苯甲醛 (3, 4-dihydroxybenzaldehyde) 與碳酸氫根 (bicarbonate) 分別以雙配位和單配位的方式與三價鐵離子配位在一起。此配位的硫化銅奈米粒子經由近紅外光照射所產生的高溫可使碳酸氫根分解成二氧化碳,使得材料除了有效的光熱治療,可抑制腫瘤成長與腫瘤的消除,也具有超音波顯影的特性。

    In this study, we provide a strategy of the metal ion-ligand coordination feature for the hydrophilic hollow nanostructures showing the capability of gas release to fulfill the echogenicity for the ultrasound imaging. We began with solid Cu2O nanoparticles, followed by a modified Kirkendall process to convert solid Cu2O into hollow porous CuS. The ferric ion (Fe3+) was used as the coordination center to bridge both dopamine and bicarbonate. The dopamine served as the bidentate ligand to coordinate Fe3+, while the bicarbonate coordinated to Fe3+ in a monodentate manner. The coordinated CuS nanoparticles revealing NIR light-induced hyperthermia resulted in the decomposition of bicarbonate into CO2 serving as echogenic source and the performance in inhibition of the tumor growth.

    中文摘要 I 英文延伸摘要 (Extended Abstract) II 誌謝 XII 目錄 XIII 表目錄 XV 圖目錄 XVI 第一章、緒論 1 1-1 超音波影像 3 1-1-1 超音波顯影劑 3 1-1-2 超音波顯影劑之發展 4 1-1-3 超音波影像於奈米材料的應用 4 1-2 金屬-配位子的配位化學 7 1-2-1 配位化合物的起源 7 1-2-2 配位化學於奈米材料的應用 7 1-3硫化銅 (Cu2-xS) 奈米材料 12 1-3-1硫化銅奈米材料性質簡介 14 1-3-2中空硫化銅奈米結構之合成 16 1-3-3硫化銅奈米材料於生物醫學上的應用 18 第二章、實驗藥品與儀器設備 21 2-1 實驗藥品 21 2-1-1 合成h-CuS/BC奈米粒子的化學藥品 21 2-1-2 細胞實驗所需之化學藥品 23 2-1-3 實驗細胞株 24 2-2 儀器設備 25 第三章、配位中空硫化銅奈米粒子於近紅外光照射下的超音波影像與光熱治療 27 3-1 研究動機與目的 27 3-2 實驗步驟 28 3-2-1 氧化亞銅 (Cu2O) 奈米粒子之製備 29 3-2-2 中空硫化銅 (h-CuS) 奈米粒子之製備 29 3-2-3 表面修飾碳酸氫根離子之硫化銅 (h-CuS/BC) 奈米粒子之製備 30 3-2-4 表面修飾聚乙二醇 (PEG) 之硫化銅奈米粒子之製備 31 3-2-5 硫化銅奈米粒子照射連續波二極體808 nm近紅外光雷射進行光熱轉換之升溫曲線實驗步驟 32 3-2-6 硫化銅奈米粒子之莫耳吸收係數與光熱轉換效率之計算 33 3-2-7 二氧化碳的定量 35 3-2-8 鐵離子與二氧化碳的釋放 35 3-2-9 材料的穩定性 35 3-2-10 材料置於凝膠 (agarose gel) 中之超音波影像 35 3-2-11 細胞培養、細胞毒性測試 (MTT assay) 之實驗步驟 36 3-2-12 將PEGylated h-CuS/BC照射連續波二極體808 nm近紅外光雷射進行光熱治療之實驗步驟 38 3-2-13 材料於體內的光熱治療效率 39 3-2-14 血液分析、H&E染色與生物體內分佈分析 39 3-3 結果與討論 40 3-3-1 硫化銅結構與性質之鑑定 40 3-3-2 硫化銅之升溫曲線與光熱轉換效率 57 3-3-3 硫化銅之超音波影像 59 3-3-4 硫化銅之細胞毒性測試與光熱治療進行癌細胞之毒殺 59 3-3-5 硫化銅於動物體內的超音波顯影與光熱治療 61 第四章、結論 65 參考文獻 66

    1. Schutt, E. G.; Klein, D. H.; Mattrey, R. M.; Riess, J. G. Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals. Angew. Chem. Int. Ed. 2003, 42, 3218-3235.
    2. Vlaskou, D.; Mykhaylyk, O.; Krötz, F.; Hellwig, N.; Renner, R.; Schillinger, U.; Gleich, B.; Heidsieck, A.; Schmitz, G.; Hensel, K.; Plank, C. Magnetic and Acoustically Active Lipospheres for Magnetically Targeted Nucleic Acid Delivery. Adv. Funct. Mater. 2010, 20, 3881-3894.
    3. Nakatsuka, M. A.; Hsu, M. J.; Esener, S. C.; Cha, J. N.; Goodwin, A. P. DNA-Coated Microbubbles with Biochemically Tunable Ultrasound Contrast Activity. Adv. Mater. 2011, 23, 4908-4912.
    4. Wang, X.; Chen, H.; Chen, Y.; Ma, M.; Zhang, K.; Li, F.; Zheng, Y.; Zeng, D.; Wang, Q.; Shi, J. Perfluorohexane-Encapsulated Mesoporous Silica Nanocapsules as Enhancement Agents for Highly Efficient High Intensity Focused Ultrasound (HIFU). Adv. Mater. 2012, 24, 785-791.
    5. Niu, D.; Wang, X.; Li, Y.; Zheng, Y.; Li, F.; Chen, H.; Gu, J.; Zhao, W.; Shi, J. Facile Synthesis of Magnetite/Perfluorocarbon Co-Loaded Organic/Inorganic Hybrid Vesicles for Dual-Modality Ultrasound/Magnetic Resonance Imaging and Imaging-Guided High-Intensity Focused Ultrasound Ablation. Adv. Mater. 2013, 25, 2686-2692.
    6. Jia, X.; Cai, X.; Chen, Y.; Wang, S.; Xu, H.; Zhang, K.; Ma, M.; Wu, H.; Shi, J.; Chen, H. Perfluoropentane-Encapsulated Hollow Mesoporous Prussian Blue Nanocubes for Activated Ultrasound Imaging and Photothermal Therapy of Cancer. ACS Appl. Mater. Inter. 2015, 7, 4579-4588.
    7. Nam, Y. S.; Yoon, J. J.; Park, T. G. A Novel Fabrication Method of Macroporous Biodegradable Polymer Scaffolds Using Gas Foaming Salt as a Porogen Additive. J. Biomed. Mater. Res. 2000, 53, 1-7.
    8. Chung, M. F.; Chen, K. J.; Liang, H. F.; Liao, Z. X.; Chia, W. T.; Xia, Y.; Sung, H. W. A Liposomal System Capable of Generating CO2 Bubbles to Induce Transient Cavitation, Lysosomal Rupturing, and Cell Necrosis. Angew. Chem. Int. Ed. 2012, 51, 10089-10093.
    9. Chen, L. X.; Liu, T.; Thurnauer, M. C.; Csencsits, R.; Rajh, T. Fe2O3 Nanoparticle Structures Investigated by X-ray Absorption Near-Edge Structure, Surface Modifications, and Model Calculations. J. Phys. Chem. B 2002, 106, 8539-8546.
    10. Xu, C.; Xu, K.; Gu, H.; Zheng, R.; Liu, H.; Zhang, X.; Guo, Z.; Xu, B. Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles. J. Am. Chem. Soc. 2004, 126, 9938-9939.
    11. Wang, S.; Ogata, M.; Horita, S.; Ohtsuka, J.; Nagata, K.; Tanokura, M. A novel mode of ferric ion coordination by the periplasmic ferric ion-binding subunit FbpA of an ABC-type iron transporter from Thermus thermophilus HB8. Acta Cryst. 2014, 70, 196-202.
    12. Pang, M.; Zeng, H. C. Highly Ordered Self-Assemblies of Submicrometer Cu2O Spheres and Their Hollow Chalcogenide Derivatives. Langmuir 2010, 26, 5963-5970.
    13. Gao, C.; Zheng, H.; Xing, L.; Shu, M.; Che, S. Designable Coordination Bonding in Mesopores as a pH-Responsive Release System. Chem. Mater. 2010, 22, 5437-5444.
    14. Liu, J.; Levine, A. L.; Mattoon, J. S.; Yamaguchi, M.; Lee, R. J.; Pan, X. L.; Rosol, T. J. Nanoparticles as Image Enhancing Agents for Ultrasonography. Phys. Med. Biol. 2006, 51, 2179-2189.
    15. Lin, P. L.; Eckersley, R. J.; Hall, E. A. H. Ultrabubble: A Laminated Ultrasound Contrast Agent with Narrow Size Range. Adv. Mater. 2009, 21, 3949-3952.
    16. Casciaro, S.; Conversano, F.; Ragusa, A.; Malvindi, M. A.; Franchini, R.; Greco, A.; Pellegrino, T.; Gigli, G. Optimal Enhancement Configuration of Silica Nanoparticles for Ultrasound Imaging and Automatic Detection at Conventional Diagnostic Frequencies. Invest. Radiol. 2010, 45, 715-724.
    17. Liu, M.; Xue, X.; Ghosh, C.; Liu, X.; Liu, Y.; Furlani, E. P.; Swihart, M. T.; Prasad, P. N. Room-Temperature Synthesis of Covellite Nanoplatelets with Broadly Tunable Localized Surface Plasmon Resonance. Chem. Mater. 2015, 27, 2584-2590.
    18. Xie, Y.; Carbone, L.; Nobile, C.; Grillo, V.; D’Agostino, S.; Sala, F. D.; Giannini, C.; Altamura, D.; Oelsner, C.; Kryschi, C.; Cozzoli, P. D. Metallic-like Stoichiometric Copper Sulfide Nanocrystals: Phase- and Shape-Selective Synthesis, Near-Infrared Surface Plasmon Resonance Properties, and Their Modeling. ACS Nano 2013, 7, 7352-7369.
    19. Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S.; Melancon, M. P.; Tian, M.; Liang, D.; Li, C. A Chelator-Free Multifunctional [64Cu]CuS Nanoparticle Platform for Simultaneous Micro-PET/CT Imaging and Photothermal Ablation Therapy. J. Am. Chem. Soc. 2010, 132, 15351-15358.
    20. Xiao, Q.; Zheng, X.; Bu, W.; Ge, W.; Zhang, S.; Chen, F.; Xing, H.; Ren, Q.; Fan, W.; Zhao, K.; Hua, Y.; Shi, J. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 2013, 135, 13041-13048.
    21. Goel, S.; Chen, F.; Cai, W. Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics. Small 2014, 10, 631-645.
    22. Chen, F.; Hong, H.; Goel, S.; Graves, S. A.; Orbay, H.; Ehlerding, E. B.; Shi, S.; Theuer, C. P.; Nickles, R. J.; Cai, W. In Vivo Tumor Vasculature Targeting of CuS@MSN Based Theranostic Nanomedicine. ACS Nano 2015, 9, 3926-3934.
    23. Yang, G.; Lv, R.; He, F.; Qu, F.; Gai, S.; Du, S.; Wei, Z.; Yang, P. A Core/Shell/Satellite Anticancer Platform for 808 NIR Light-Driven Multimodal Imaging and Combined Chemo-/Photothermal Therapy. Nanoscale 2015, 7, 13747-13758.
    24. Wu, L.; Wu, M.; Zeng, Y.; Zhang, D.; Zheng, A.; Liu, X.; Liu, J. Multifunctional PEG Modified DOX Loaded Mesoporous Silica Nanoparticle@CuS Nanohybrids as Photo-Thermal Agent and Thermal-Triggered Drug Release Vehicle for Hepatocellular Carcinoma Treatment. Nanotechnology 2015, 26, 025102.
    25. Zha, Z.; Zhang, S.; Deng, Z.; Li, Y.; Li, C.; Dai, Z. Enzyme-Responsive Copper Sulphide Nanoparticles for Combined Photoacoustic Imaging, Tumor-Selective Chemotherapy and Photothermal Therapy. Chem. Commun. 2013, 49, 3455-3457.
    26. Ramadan, S.; Guo, L.; Li, Y.; Yan, B.; Lu, W. Hollow copper sulfide nanoparticle-mediated transdermal drug delivery. Small 2012, 8, 3143-3150.
    27. Dong, K.; Liu, Z.; Li, Z.; Ren, J.; Qu, X. Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. Adv. Mater. 2013, 25, 4452-4458.
    28. Guo, L.; Yan, D. D.; Yang, D.; Li, Y.; Wang, X.; Zalewski, O.; Yan, B.; Lu, W. Combinatorial Photothermal and Immuno Cancer Therapy Using Chitosan-Coated Hollow Copper Sulfide Nanoparticles. ACS Nano 2014, 8, 5670-5681.
    29. Roy, P.; Srivastava, S. K. Low-temperature synthesis of CuS nanorods by simple wet chemical method. Materials Letters 2007, 61, 1693-1697.
    30. Kruszynska, M.; Borchert, H.; Bachmatiuk, A.; Rümmeli, M. H.; Büchner, B.; Parisi, J.; Kolny-Olesiak, J. Size and Shape Control of Colloidal Copper(I) Sulfide Nanorods. ACS Nano 2012, 6, 5889-5896.
    31. Hsu, S. W.; Ngo, C.; Tao, A. R. Tunable and Directional Plasmonic Coupling within Semiconductor Nanodisk Assemblies. Nano Lett. 2014, 14, 2372-2380.
    32. Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv. Mater. 2011, 23, 3542-3547.
    33. Ku, G.; Zhou, M.; Song, S.; Huang, Q.; Hazle, J.; Li, C. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 2012, 6, 7489-7496.
    34. Liu, Z.; Kiessling, F.; Gätjens, J. Advanced Nanomaterials in Multimodal Imaging: Design, Functionalization, and Biomedical Applications. J. Nanomater. 2010, 894303.
    35. Ke, H.; Wang, J.; Dai, Z.; Jin, Y.; Qu, E.; Xing, Z.; Guo, C.; Yue, X.; Liu, J. Gold-Nanoshelled Microcapsules: A Theranostic Agent for Ultrasound Contrast Imaging and Photothermal Therapy. Angew. Chem. Int. Ed. 2011, 50, 3017-3021.
    36. Xing, Z.; Wang, J.; Ke, H.; Zhao, B.; Yue, X.; Dai, Z.; Liu, J. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging. Nanotechnology 2010, 21, 145607.
    37. Cai, X.; Jia, X.; Gao, W.; Zhang, K.; Ma, M.; Wang, S.; Zheng, Y.; Shi, J.; Chen, H. A Versatile Nanotheranostic Agent for Efficient Dual-Mode Imaging Guided Synergistic Chemo-Thermal Tumor Therapy. Adv. Funct. Mater. 2015, 25, 2520-2529.
    38. Zha, Z.; Wang, S.; Zhang, S.; Qu, E.; Ke, H.; Wang, J.; Dai., Z. Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubble destruction for efficient photothermal therapy. Nanoscale 2013, 5, 3216-3219.
    39. Guo, C.; Jin, Y.; Dai, Z. Multifunctional Ultrasound Contrast Agents for Imaging Guided Photothermal Therapy. Bioconjugate Chem. 2014, 25, 840-854.
    40. Min, K. H.; Min, H. S.; Lee, H. J.; Park, D. J.; Yhee, J. Y.; Kim, K.; Kwon, I. C.; Jeong, S. Y.; Silvestre, O. F.; Chen, X.; Hwang, Y. S.; Kim, E. C.; Lee, S. C. pH-Controlled Gas-Generating Mineralized Nanoparticles: A Theranostic Agent for Ultrasound Imaging and Therapy of Cancers. ACS Nano 2015, 9, 134-145.
    41. Zhao, Y.; Song, W.; Wang, D.; Ran, H.; Wang, R.; Yao, Y.; Wang, Z.; Zheng, Y.; Li., P. Phase-Shifted PFH@PLGA/Fe3O4 Nanocapsules for MRI/US Imaging and Photothermal Therapy with near-Infrared Irradiation. ACS Appl. Mater. Inter. 2015, 7, 14231-14242.
    42. Chen, K. J.; Chaung, E. Y.; Wey, S. P.; Lin, K. J.; Cheng, F.; Lin, C. C.; Liu, H. L.; Tseng, H. W.; Liu, C. P.; Wei, M. C.; Liu, C. M.; Sung, H. W. Hyperthermia-Mediated Local Drug Delivery by a Bubble-Generating Liposomal System for Tumor-Specific Chemotherapy. ACS Nano 2014, 8, 5105-5115.
    43. Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions. Chem. Soc. Rev. 2015, 44, 815-832.
    44. Wu, M.; Meng, O.; Chen, Y.; Xu, P.; Zhang, S.; Li, Y.; Zhang, L.; Wang, M.; Yao, H.; Shi, J. Ultrasmall Confined Iron Oxide Nanoparticle MSNs as a pH-Responsive Theranostic Platform. Adv. Funct. Mater. 2014, 24, 4273-4283.
    45. Gautier, J.; Munnier, E.; Douziech-Eyrolles, L.; Paillard, A.; Dubois, P.; Chourpa, I. SERS spectroscopic approach to study doxorubicin complexes with Fe2+ ions and drug release from SPION-based nanocarriers. Analyst 2013, 138, 7354-7361.
    46. Fang, W.; Yang, J.; Gong, J.; Zheng, N. Photo- and pH-Triggered Release of Anticancer Drugs from Mesoporous Silica-Coated Pd@Ag Nanoparticles. Adv. Funct. Mater. 2012, 22, 842-848.
    47. Porter, J.; Arreguin, S.; Pierpont, C. G. Ferric iron complexes of dopamine and 5,6-dihydroxyindole with nta, edda, and edta as ancillary ligands. Inorg. Chim. Acta 2010, 363, 2800-2803.
    48. Hienerwadel, R.; Berthomieu, C. Bicarbonate binding to the non-heme iron of photosystem II, investigated by Fourier transform infrared difference spectroscopy and 13C-labeled bicarbonate. Biochemistry 1995, 34, 16288-16297.
    49. Kundu, J.; Pradhan, D. Controlled synthesis and catalytic activity of copper sulfide nanostructured assemblies with different morphologies. ACS Appl. Mater. Inter. 2014, 6, 1823-1834.
    50. Basu, M.; Sinha, A. K.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Pal, T. Evolution of hierarchical hexagonal stacked plates of CuS from liquid-liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environ. Sci. Technol. 2010, 44, 6313-6318.
    51. Zhang, J.; Yu, J.; Zhang, Y.; Li, Q.; Gong, J. R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 2011, 11, 4774-4779.
    52. Peng, M.; Ma, L. L.; Zhang, Y. G.; Tan, M.; Wang, J. B.; Yu, Y. Controllable synthesis of self-assembled Cu2S nanostructures through a template-free polyol process for the degradation of organic pollutant under visible light. Mater. Res. Bull. 2009, 44, 1834-1841.
    53. Wang, X. y.; Fang, Z.; Lin, X. Copper sulfide nanotubes: facile, large-scale synthesis, and application in photodegradation. J. Nanopart. Res. 2009, 11, 731-736.
    54. Rhee, J. H.; Lee, Y. H.; Bera, P.; Seok, S. I. Cu2S-deposited mesoporous NiO photocathode for a solar cell. Chem. Phys. Lett. 2009, 477, 345-348.
    55. Anuar, K.; Zainal, Z.; Hussein, M. Z.; Saravanan, N.; Haslina, I. Cathodic electrodeposition of Cu2S thin film for solar energy conversion. Sol. Energ. Mat. Sol. C. 2002, 73, 351-365.
    56. Lee, H.; Yoon, S. W.; Kim, E. J.; Park, J. In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett. 2007, 7, 778-784.
    57. Chen, Y.; Davoisne, C.; Tarascon, J.-M.; Guery, C. Growth of single-crystal copper sulfide thin films via electrodeposition in ionic liquid media for lithium ion batteries. J. Mater. Chem. 2012, 22, 5295-5299.
    58. Zhou, L.; Kuai, L.; Li, W.; Geng, B. Ion-exchange route to Au-CuxOS yolk-shell nanostructures with porous shells and their ultrasensitive H2O2 detection. ACS Appl. Mater. Inter. 2012, 4, 6463-6467.
    59. Liu, J.; Xue, D. Rapid and scalable route to CuS biosensors: a microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor. J. Mater. Chem. 2011, 21, 223-228.
    60. Li, Y.; Lu, W.; Huang, Q.; Huang, M.; Li, C.; Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 2010, 5, 1161-1171.
    61. Tian, Q.; Hu, J.; Zhu, Y.; Zou, R.; Chen, Z.; Yang, S.; Li, R.; Su, Q.; Han, Y.; Liu, X. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc. 2013, 135, 8571-8577.
    62. Li, B.; Wang, Q.; Zou, R.; Liu, X.; Xu, K.; Li, W.; Hu, J. Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale 2014, 6, 3274-3282.
    63. Tian, Q.; Jiang, F.; Zou, R.; Liu, Q.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761-9771.
    64. Ding, X.; Liow, C. H.; Zhang, M.; Huang, R.; Li, C.; Shen, H.; Liu, M.; Zou, Y.; Gao, N.; Zhang, Z.; Li, Y.; Wang, Q.; Li, S.; Jiang, J. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684-15693.
    65. Guo, L.; Panderi, I.; Yan, D. D.; Szulak, K.; Li, Y.; Chen, Y. T.; Ma, H.; Niesen, D. B.; Seeram, N.; Ahmed, A.; Yan, B.; Pantazatos, D.; Lu, W. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. ACS Nano 2013, 7, 8780-8793.
    66. Zhao, Y.; Pan, H.; Lou, Y.; Qiu, X.; Zhu, J.; Burda, C. Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides. J. Am. Chem. Soc. 2009, 131, 4253-4261.
    67. Silvester, E. J.; Grieser, F.; Sexton, B. A.; Healy, T. W. Spectroscopic studies on copper sulfide sols. Langmuir 1991, 7, 2917-2922.
    68. Miessler, G. L.; Tarr, D. A. Inorganic Chemistry. Pearson Prentice Hall, 2011.
    69. Adamson, A. W.; Fleischauer, P. D. Concepts of inorganic photochemistry. John Wiley & Sons Australia, Limited, 1975.
    70. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238-7248.
    71. Pissuwan, D.; Nose, K.; Kurihara, R.; Kaneko, K.; Tahara, Y.; Kamiya, N.; Goto, M.; Katayama, Y.; Niidome, T. A solid-in-oil dispersion of gold nanorods can enhance transdermal protein delivery and skin vaccination. Small 2011, 7, 215-220.
    72. Liz-Marzan, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006, 22, 32-41.
    73. Alam, R.; Labine, M.; Karwacki, C. J.; Kamat, P. V.; Modulation of Cu2−xS Nanocrystal Plasmon Resonance through Reversible Photoinduced Electron Transfer. ACS Nano 2016, 10, 2880-2886.
    74. Xie, Y.; Riedinger, A.; Prato, M.; Casu, A.; Genovese, A.; Guardia, P.; Sottini, S.; Sangregorio, C.; Miszta, K.; Ghosh, S.; Pellegrino,T.; Manna, L. Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ Ions, J. Am. Chem. Soc. 2013, 135, 17630-17637.
    75. Pang, M.; Hu, J.; Zeng, H. C. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J. Am. Chem. Soc. 2010, 132, 10771-10785.
    76. Zhang, L.; Wang, H. Cuprous oxide nanoshells with geometrically tunable optical properties. ACS Nano 2011, 5, 3257-3267.
    77. Wang, Y. F.; Liu, G. Y.; Sun, L. D.; Xiao, J. W.; Zhou, J. C.; Yan, C. H. Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200-7206.
    78. Smith, A. M.; Mancini, M. C.; Nie, S. Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710-711.
    79. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115-2120.
    80. Li, W. P.; Liao, P. Y.; Su, C. H.; Yeh, C. S. Formation of oligonucleotide-gated silica shell-coated Fe3O4-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. J. Am. Chem. Soc. 2014, 136, 10062-10075.
    81. Chang, Y. T.; Liao, P. Y.; Sheu, H. S.; Tseng, Y. J.; Cheng, F. Y.; Yeh, C. S. Near-infrared light-responsive intracellular drug and siRNA release using Au nanoensembles with oligonucleotide-capped silica shell. Adv. Mater. 2012, 24, 3309-3314.
    82. Wang, S.; Riedinger, A.; Li, H.; Fu, C.; Liu, H.; Li, L.; Liu, T.; Tan, L.; Barthel, M. J.; Pugliese, G.; Donato, F. D.; D’Abbusco, M. S.; Meng, X.; Manna, L.; Meng, H.; Pellegrino, T. Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects. ACS Nano, 2015, 9, 1788-1800.
    83. Zhoua, M.; Chenb, Y.; Adachib, M.; Wena, X.; Erwinc, B.; Mawlawic, O.; Laib, S. Y.; Lia, C. Single agent nanoparticle for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer. Biomaterials 2015, 57, 41-49.
    84. Song, G.; Wang, Q.; Wang, Y.; Lv, G.; Li, C.; Zou, R.; Chen, Z.; Qin, Z.; Huo, K.; Hu, R.; Hu, J. A Low-Toxic Multifunctional Nanoplatform Based on Cu9S5@mSiO2 Core-Shell Nanocomposites: Combining Photothermal- and Chemotherapies with Infrared Thermal Imaging for Cancer Treatment. Adv. Funct. Mater. 2013, 23, 4281-4292.
    85. Ding, K.; Zeng, J.; Jing, L.; Qiao, R.; Liu, C.; Jiao, M.; Lib, Z.; Gao, M. Aqueous synthesis of PEGylated copper sulfide nanoparticles for photoacoustic imaging of tumors. Nanoscale, 2015, 7, 11075-11081.
    86. Mou, J.; Li, P.; Liu, C.; Xu, H.; Song, L.; Wang, J.; Zhang, K.; Chen,Y.; Shi, J.; Chen, H. Ultrasmall Cu2-xS Nanodots for Highly Efficient Photoacoustic Imaging-Guided Photothermal Therapy. Small 2015, 11, 2275-2283.
    87. Moua, J.; Liub, C.; Lic, P.; Chena, Y.; Xuc, H.; Weia, C.; Songb, L.; Shia, J.; Chena, H. A facile synthesis of versatile Cu2-xS nanoprobe for enhanced MRI and infrared thermal/photoacoustic multimodal imaging. Biomaterials 2015, 57, 12-21.
    88. Wang, Z.; Huang, P.; Jacobson, O.; Wang, Z.; Liu, Y.; Lin, L.; Lin, J.; Lu, N.; Zhang, H.; Tian, R.; Niu, G.; Liu, G.; Chen, X. Biomineralization-Inspired Synthesis of Copper Sulfide-Ferritin Nanocages as Cancer Theranostics. ACS Nano 2016, 10, 3453-3460.
    89. Zhou, M.; Li, J.; Liang, S.; Sood, A. K.; Liang, D.; Li, C. CuS Nanodots with Ultrahigh Efficient Renal Clearance for Positron Emission Tomography Imaging and Image-Guided Photothermal Therapy. ACS Nano 2015, 9, 7085-7096.
    90. Tsai, M. F.; Chang, S. H.; Cheng, F. Y.; Shanmugam, V.; Cheng, Y. S.; Su, C. H.; Yeh, C. S. Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy. ACS Nano 2013, 7, 5330-5342.
    91. Zhang, L.; Blom, D. A.; Wang, H. Au-Cu2O Core-Shell Nanoparticles: A Hybrid Metal-Semiconductor Heteronanostructure with Geometrically Tunable Optical Properties. Chem. Mater. 2011, 23, 4587-4598.
    92. Schneider, P.; Adsorption isotherms of microporous-mesoporous solids revisited. Appl. Catal., A 1995, 129, 157-165.
    93. Wu, Z. C.; Li, W. P.; Luo, C. H.; Su, C. H.; Yeh, C. S. Rattle-Type Fe3O4@CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows. Adv. Funct. Mater. 2015, 25, 6527-6537.
    94. Misinzo, G.; Delputte, P. L.; Nauwynck. H. J. Inhibition of endosome-lysosome system acidification enhances porcine circovirus 2 infection of porcine epithelial cells. J. Virol. 2008, 82, 1128-1135.
    95. Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. J. Phys. Chem. C 2007, 111, 3636-3641.
    96. Nolsoe, C. P.; Torp-Pedersen, S.; Burcharth, F.; Horn, T.; Pedersen, S.; Christensen, N. E.; Olldag, E. S.; Andersen, P. H.; Karstrup, S.; Lorentzen, T. Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-YAG laser with a diffuser tip: a pilot clinical study. Radiology 1993, 187, 333-337.
    97. Vogel, A.; Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 2003, 103, 577-644.
    98. Lai, J.; Shah, B. P.; Garfunkel, E.; Lee, K. B. Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano 2013, 7, 2741-2750.
    99. Wang, Y.; Huang, R.; Liang, G.; Zhang, Z.; Zhang, P.; Yu, S.; Kong, J. MRI-visualized, dual-targeting, combined tumor therapy using magnetic graphene-based mesoporous silica. Small 2014, 10, 109-116.
    100. Chou, S. W.; Shau, Y. H.; Wu, P. C.; Yang, Y. S.; Shieh, D. B.; Chen, C. C. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J. Am. Chem. Soc. 2010, 132, 13270-13278.
    101. Alric, C.; Taleb, J.; Le Duc, G.; Mandon, C.; Billotey, C.; Le Meur-Herland, A.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; Roux, S.; Tillement, O. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 5908-5915.
    102. Creixell, M.; Bohorquez, A. C.; Torres-Lugo, M.; Rinaldi, C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 2011, 5, 7124-7129.
    103. Wang, Y.; Wang, K.; Zhao, J.; Liu, X.; Bu, J.; Yan, X.; Huang, R. Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J. Am. Chem. Soc. 2013, 135, 4799-4804.
    104. Koval, I. A.; van der Schilden, K.; Schuitema, A. M.; Gamez, P.; Belle, C.; Pierre, J. L., Luken, M.; Krebs, B.; Roubeau, O.; Reedijk, J. Proton NMR Spectroscopy and Magnetic Properties of a Solution-Stable Dicopper (II) Complex Bearing a Single µ-Hydroxo Bridge. Inorg. Chem. 2005, 44, 4372-4382.
    105. Murthy, N. N.; Karlin, K. D.; Bertini, I.; Luchinat, C. NMR and Electronic Relaxation in Paramagnetic Dicopper (II) Compounds. J. Am. Chem. Soc. 1997, 119, 2156-2162.
    106. Marbella, L. E.; Millstone, J. E. NMR Techniques for Noble Metal Nanoparticles. Chem. Mater. 2015, 27, 2721-2739.
    107. Pitsillides, C. M.; Joe, E. K.; Wei, X.; Anderson, R. R.; Lin, C. P. Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles. Biophys. J. 2003, 84, 4023-4032.

    無法下載圖示 校內:2018-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE