| 研究生: |
蘇建安 Su, Jian-An |
|---|---|
| 論文名稱: |
利用數位雙生概念建構混合實境施工查驗系統-以機電工程為例 Applying the Concept of Digital Twins to the Development of the MR-based Construction Inspection System: A Case Study of MEP |
| 指導教授: |
馮重偉
Feng, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 混合實境 、BIM 建築資訊模型 、機電工程查驗 、數位雙生 |
| 外文關鍵詞: | Mixed Reality, BIM, MEP inspection, Digital Twins |
| 相關次數: | 點閱:80 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
機電工程的查驗是一項複雜且多樣的工作,通常依賴紙本圖說和經驗來進行機電系統的查驗,然而這種傳統方式容易因為人為產生判讀錯誤,為了解決這些問題,近年來開始運用建築資訊模型 (Building Information Modeling, BIM) 技術進行輔助機電工程的查驗,但傳統的 BIM 模型往往與施工現場之間存在不一致的情況,使得 BIM 在查驗作業中的成效不彰,因此研究開始嘗試利用數位雙生技術和混合實境技術來提升機電工程查驗的效率。數位雙生技術可將現實世界中的物理對象或場景以數位化的方式呈現,並與現實世界進行互動和資訊交流,混合實境技術則可將虛擬的 BIM 模型內容投影至現實世界的中,讓使用者能夠同時觀察虛擬模型和實際施工場景。
在本研究中,首先建立符合查驗規範的 BIM 模型,該模型包括機電系統的各項設備和相關資訊,接著建立雲端資料庫流程,將 BIM 模型和相關資訊儲存在雲端平台上,進行實時同步更新,確保查驗人員始終使用最新的 BIM 模型和資訊進行查驗作業,然後利用混合實境設備,將 BIM 模型的虛擬內容投影到現實施工場景中,讓查驗人員能夠在現場直接觀察,並將虛擬模型和現場設備進行對比,查驗人員在確保虛擬模型與實際情況一致後,便可透過混合實境設備進行查驗,配合混合實境的各項輔助功能,查驗人員可以更加精準地做出判斷,而查驗結果會透過網路上傳至雲端資料庫,再透過流程自動化技術,自動生成符合機電系統查驗工程需求的查驗報表,節省查驗人員的時間和精力,同時提高查驗報告的準確性。
MEP inspection is a complex and diverse task that requires a significant amount of operational data. Traditionally, it relies on paper drawings and experience, which can lead to human errors in interpreting the information. To address these issues, the integration of Building Information Modeling (BIM) has been used to consolidate data. However, the current BIM models often exhibit inconsistencies with the actual construction site, limiting the effectiveness of BIM in construction operations. As a result, researchers both domestically and internationally have begun exploring the use of Digital Twins and Mixed Reality (MR) technology to present BIM models and information through MR devices at the MEP construction site, achieving a seamless integration of virtual and physical elements.
Therefore, this research aims to effectively assist the MEP inspection process using MR technology, addressing the need for collaborative work during inspections. The first step is to establish BIM models based on inspection standards. The analysis results are then used to identify the functional requirements for subsequent MR system development. A cloud database workflow is constructed to store the necessary data, along with specifications for linking the MR system. Finally, leveraging process automation techniques, reports are generated to meet the requirements of MEP inspection projects, enhancing the effectiveness of BIM models in on-site applications, and improving the efficiency and accuracy of on-site inspection operations.
英文文獻
[1] Alizadehsalehi, S., Hadavi, A., & Huang, J. C. (2020). From BIM to extended reality in AEC industry. 116, 103254.
[2] Chalhoub, J., & Ayer, S. K. (2018). Using Mixed Reality for electrical construction design communication. Automation in Construction, 86, 1-10.
[3] Chu, M., Matthews, J., & Love, P. E. (2018). Integrating mobile building information modelling and augmented reality systems: an experimental study. Automation in Construction, 85, 305-316.
[4] El Ammari, K., & Hammad, A. (2019). Remote interactive collaboration in facilities management using BIM-based mixed reality. Automation in Construction, 107, 102940.
[5] Eldeep, A. M., Farag, M. A., & Abd El-hafez, L. M. (2022). Using BIM as a lean management tool in construction processes–A case study. Ain Shams Engineering Journal, 13, 101556.
[6] Garbett, J., Hartley, T., & Heesom, D. (2021). A multi-user collaborative BIM-AR system to support design and construction. Automation in Construction, 122, 103487.
[7] Getuli, V., Capone, P., Bruttini, A., & Isaac, S. (2020). BIM-based immersive Virtual Reality for construction workspace planning: A safety-oriented approach. Automation in Construction, 114, 103160.
[8] Gradim, B., & Teixeira, L. (2023). Robotic Process Automation as an enabler of Industry 4.0 to eliminate the eighth waste: a study on better usage of human talent. Procedia Computer Science, 204, 643-651.
[9] Hu, Z. Z., Zhang, J. P., Yu, F. Q., Tian, P. L., & Xiang, X. S. (2016). Construction and facility management of large MEP projects using a multi-Scale building information model. Advances in Engineering Software, 100, 215-230.
[10] Kostov, G., & Wolfartsberger, J. (2022). Designing a Framework for Collaborative Mixed Reality Training. Procedia Computer Science, 200, 896-903.
[11] Ma, Z., Cai, S., Mao, N., Yang, Q., Feng, J., & Wang, P. (2018). Construction quality management based on a collaborative system using BIM and indoor positioning. Automation in Construction, 92, 35-45.
[12] Patrício, L., Ávila, P., Varela, L., Cruz-Cunha, M. M., Ferreira, L. P., Bastos, J., Castro, H., & Silva, J. (2023). Literature review of decision models for the sustainable implementation of Robotic Process Automation. Procedia Computer Science, 219, 870-878.
[13] Pooya, A., Rashmi, S., Patrick, B. R., Burcin, B. G., Lucio, S., Yasemin, C. G., & Gale, L. (2023). Participants matter: Effectiveness of VR-based training on the knowledge, trust in the robot, and self-efficacy of construction workers and university students. Advanced Engineering Informatics, 55, 101837.
[14] Pregnolato, M., Gunner, S., Voyagaki, E., De Risi, R., Carhart, N., Gavriel, G., Tully, P., Tryfonas, T., Macdonald, J., & Taylor, C. (2022). Towards Civil Engineering 4.0: Concept, workflow and application of Digital Twins for existing infrastructure. Automation in Construction, 141, 104421.
[15] Schiavi, B., Havard, V., Beddiar, K., & Baudry, D. (2022). BIM data flow architecture with AR/VR technologies: Use cases in architecture engineering and construction. 134, 104054.
[16] Song, H., Yang, G., Li, H., Zhang, Tian., & Jiang, A. (2023). Digital twin enhanced BIM to shape full life cycle digital transformation for bridge engineering. Automation in Construction, 147, 104736.
[17] Wang, J., Wang, X., Shou, W., Chong, H. Y., & Guo, J. (2016). Building information modeling-based integration of MEP layout designs and constructability. Automation in construction, 61, 134-146.
[18] Wang, W., Guo, H., Li, X., Tang, S., Li, Y., Xie, L., & Lv, Z. (2022). BIM Information Integration Based VR Modeling in Digital Twins in Industry 5.0. Journal of Industrial Information Integration, 28, 100351.
[19] Zheng, L., Lu, W., Chen, K., Chau, K.W., & Niu, Y. (2017). Benefit sharing for BIM implementation: Tackling the moral hazard dilemma in inter-firm cooperation. International Journal of Project Management, 35, 393-405.
中文文獻
[1] 行政院公共工程委員會。全國工程施工查核小組查核常見缺失態樣統計表。https://www.pcc.gov.tw/Content_List.aspx?n=35A7AE4FD0E89AD0
[2] 林煒埕, “結合建築資訊模型及混合實境建構輔助機電工程施工之協同系統” , 碩士論文, 國立成功大學土木工程學系研究所, 台南市, 2021.
[3] 梁高逢, “應用擴增實境及建築資訊模型輔助機電設備施作及查核作業”, 碩士論文, 國立成功大學土木工程學系研究所, 台南市, 2019.
[4] 莊大軍, “開發以混合實境為基礎之工程作業系統”, 碩士論文, 國立成功大學土木工程學系研究所, 台南市, 2020.
[5] 陳意慧, “利用混合實境建構機電工程放樣及施工系統” , 碩士論文, 國立成功大學土木工程學系研究所, 台南市, 2022.
[6] 臺大土木工程資訊模擬與管理研究中心,BIM 模型發展程度規範 (2017 版).
[7] 中華民國內政部營建署。「建築技術規則」建築設計施工編。https://www.cpami.gov.tw/%E6%9C%80%E6%96%B0%E6%B6%88%E6%81%AF/%E6%B3%95%E8%A6%8F%E5%85%AC%E5%91%8A/30-%E5%BB%BA%E7%AF%89%E7%AE%A1%E7%90%86%E7%AF%87/34449-%E3%80%8C%E5%BB%BA%E7%AF%89%E6%8A%80%E8%A1%93%E8%A6%8F%E5%89%87%E3%80%8D%E5%BB%BA%E7%AF%89%E8%A8%AD%E8%A8%88%E6%96%BD%E5%B7%A5%E7%B7%A8.html