| 研究生: |
賴韋豪 Lai, Wei-Hao |
|---|---|
| 論文名稱: |
三嵌段共聚物界面活性劑合成奈米介孔氧化鎢之特性與性質 Characterization and Properties of Mesoporous Tungsten Oxide Synthesized by Triblock Copolymer |
| 指導教授: |
洪敏雄
Hon, Min Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 氧化鎢 、介孔 、溶膠-凝膠法 、模板輔助成長 、場發射 |
| 外文關鍵詞: | field emission, template assisted synthesis, sol-gel method, tungsten oxide, mesoporous |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今科技產品有走向輕、薄、短、小之趨勢,讓人類對微小化材料產生迫切需求,由於奈米材料有很多化學及物理性質隨著粒徑變小而發生變化,奈米粒子雖具有高表面活性,卻容易產生聚集。由於介孔材料具有高比表面積之優勢,可改變材料表面特性,進而增加材料應用價值。本研究以三嵌段共聚物界面活性劑作為奈米介孔模板,溶膠-凝膠法輔以微胞理論合成具有高比表面積、蟲洞狀之介孔氧化鎢粉末,結合陽極氧化鋁模板技術,製備蟲洞狀介孔氧化鎢奈米纖維。
實驗結果顯示,以溶膠-凝膠法輔以三嵌段共聚物界面活性劑為奈米模板,可合成具有高比表面積(156 m2/g)之奈米介孔氧化鎢。三嵌段共聚物界面活性劑在煆燒溫度250 ℃前已移除,合成之介孔呈現具不規則之蟲洞狀結構。以三嵌段共聚物界面活性劑P123、L62所合成之蟲洞狀介孔氧化鎢粉末,其平均孔徑分別為9.8與4.9 nm。加入鹽酸溶液可形成穩定三嵌段共聚物界面活性劑之氫鍵結,強化介孔結構穩定,形成高比表面積、孔徑大小均一之蟲洞狀介孔氧化鎢。若添加量超過20 wt%去離子水及氫氧化鈉溶液則會減弱共聚物界面活性劑之氫鍵結,使比表面積下降。以無水酒精為溶劑、煆燒溫度為250 ℃之蟲洞狀介孔氧化鎢,晶粒外緣呈現直交之立方晶結構,隨煆燒溫度提高,氧化鎢結晶性、晶粒尺寸與蟲狀孔徑皆隨之成長,而使蟲洞狀介孔結構逐漸崩解,比表面積與孔洞體積下降;又因蟲洞狀孔洞仍存留於長大之晶粒內,阻礙氧化鎢晶粒成長,提高孔洞崩解溫度與熱穩定性。
蟲洞狀介孔氧化鎢之光致色變效應顯著並具再現性。氧化鎢奈米粒子大小為50 ~ 80 nm,對應之能隙值範圍為3.59~ 3.77 eV,與粒徑變化趨勢相近;蟲洞狀介孔氧化鎢能隙值為3.73 eV,比文獻報導塊材之能隙值大,顯現量子尺寸效應使氧化鎢能帶變寬。此外,本研究製作之奈米介孔氧化鎢氣體感測器有良好的回復性,由於NO氣體之脫附反應隨溫度升高而加速,於40與90 ℃對20 ppm之NO氣體之靈敏度分別達5.5與25。
以溶膠凝膠法製備浸鍍液,分別經浸鍍法、抽氣浸鍍法或充氣浸鍍法輔以氧化鋁模板皆可製備奈米介孔氧化鎢纖維。浸鍍法與抽氣浸鍍法所合成之奈米介孔氧化鎢纖維長度受限於浸鍍液流動性及凝結速率,纖維邊緣不平直。充氣浸鍍法則可改進上述缺失,藉由壓力50 psi之氮氣迫使浸鍍液完全填入AAM模板孔道內,可製備高準直之一維蟲洞狀介孔氧化鎢纖維,具有快速合成、簡化製程之優勢。
以充氣浸鍍法合成蟲洞狀介孔氧化鎢奈米纖維,其場發射行為受到基材、纖維直徑與孔洞分率之影響。蟲洞狀介孔氧化鎢奈米纖維於雙面膠/矽晶板基材上顯現團簇聚集現象,相較於銅膠帶/矽晶板基材上分散性有明顯差異,其起始電場比雙面膠/矽晶板基材為低,顯示蟲洞狀介孔氧化鎢奈米纖維於雙面膠/矽晶板基材上易發生屏蔽效應而提高起始電場與功函數。觀察纖維形態發現蟲洞狀介孔氧化鎢奈米纖維隨直徑愈大,孔洞比例下降,起始電場上升。由於無介孔之氧化鎢纖維並無場發射特性,電子發射應係藉由蟲洞狀介孔之結構作為氧化鎢奈米纖維場發射位置,氧化鎢奈米纖維之蟲狀孔洞愈多,局部功函數下降處愈多,使得起始電場下降,進而提升場發射特性。直徑20 nm之奈米介孔氧化鎢纖維於低外加電場(0.67 V/μm)有良好及穩定之場發射電流密度約1400 μA/cm2。量測時間超過20 h,未見明顯之電流密度衰減,大致仍保持初始電流密度,作為場發射顯示器電子源深具潛力。
The scientific and technological products move towards the slight, thin, short, small items now, the human being require the active demand for the minimized products. Many chemical and physical characterizations of nanomaterials differ from that of bulk materials with various particle sizes. Nanoparticles have the high surface activity, which easily agglomerated at the higher temperature. Mesoporous materials with high specific surface area, the surface characteristics and the values of applications can be promoted. Mesoporous tungsten oxide was prepared by the sol-gel method which the triblock copolymer formed micelles in the solution. Wormhole-like mesoporous tungsten oxide nanowires can be successfully prepared by the template-assisted technology.
Mesoporous tungsten oxide synthesized by triblock copolymer of L62 and P123 exhibits a Brunauer-Emmett-Teller (BET) surface area of 156 and 138 m2/g and wormhole-like mesopores with 4.9 an 9.8 nm, respectively. Triblock copolymer was completely removed at 250 ℃. For different additive conditions, HCl would further promote the BET surface area of mesoporous tungsten oxide than an additive of NaOH or above 20 % of distilled deionized water (H2O), which can be attributed to the stabilization of the micellization by hydrogen bonding among triblock copolymers. We also first find the vertical grain with cubic phase when it is calcined at 250 ℃. Tungsten oxide forms the orthorhombic phase with increasing the calcined temperature. Increasing the calcination temperature encourages the growth of tungsten oxide crystallites with a loss of mesoporous surface area, but the presence of the wormhole-like mesopores can be an obstacle for the grain growth of tungsten oxide. The wormhole-like mesostructure can retard the collapse rate of mesopores through grain growth during crystallization.
The wormhole-like mesoporous tungsten oxide exhibits outstanding sensitivity and reproduction in photochromic properties. The indirect EG for the initial state is estimated from 3.59 to 3.77 eV, in accord with the average sizes of tungsten oxide nanoparticles about 50 to 80 nm. This may be due to a relationship between nanoparticle size and the optical band gap of tungsten oxide. Mesoporous tungsten oxide powder synthesized by triblock copolymer exhibits a high transmittance with an indirect EG of 3.73 eV due to the quantum size effects. Gas sensing measurement reveals excellent recovery and sensitivity under the low gas concentration for mesoporous tungsten oxide film and sensitivities of 5.5 and 25 as exposed to 20 ppm NO gas at 40 and 90 ℃, respectively.
Wormhole-like mesoporous tungsten oxide nanowires can be successfully prepared by the immersion and gas-extracted or gas-filled methods. In the immersion and gas-extracted methods, the lengths of wormhole-like mesoporous tungsten oxide nanowires with rough surface are limited by the capillary attraction and the condensation rate of the immersed solution. The results performed that the gas-filled method has a higher efficiency to induce mesoporous materials into membrane channels with fast or simple processes.
The field-emission properties of wormhole-like mesoporous tungsten oxide nanowires prepared by gas-filled method are affected by the substrate, width sizes, and the percentage of mesopores volume within nanowires. The turn-on field of mesoporous tungsten oxide nanowires increases and which results screening effect of the lower current density on the double-stick/Si substrate. Mesoporous tungsten oxide nanowires on the Cu-tape/Si substrate improved these disadvantages reveal the low turn-on field with increasing the percentage of mesopores volume. The work function is dramatically reduced near mesopores of tungsten oxide nanowires. In this study, the surface structure of tungsten oxide nanowires may have a high density of mesopores, which serve as the emitting centers. The average diameter of 20 nm for mesoporous tungsten oxide nanowires on the Cu-tape/Si substrate reveals the low turn-on field of 0.67 V/μm with stable current density of about 1400 μA/cm2 for 20 h, which is no significant degradation. This makes wormhole-like mesoporous tungsten oxide nanowires a suitable alternative candidate for field-emission emitters.
[1] 牟中原、陳家俊,“奈米材料研究發展”,科學發展月刊,第28卷第4期,(2000),281-288頁。
[2] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure Appl. Chem., 57 (1985) 603-619.
[3] U. Ciesla and F. Schüth, “Ordered mesoporous materials”, Micropor. Mesopor. Mat., 27 (1999) 131-149.
[4] S. Bhatia, Zeolite Catalysis: Principles and Application, CRC press, Florida, (1990) chap. 7, 145-170.
[5] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Nature, 359 (1992) 710-712.
[6] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresage, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins and J. L. Schlenker, “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, J. Am. Chem. Soc., 114 (1992) 10834-10843.
[7] C. G. Wu and T. Bein, “Conducting Polyaniline Filaments in a Mesoporous Channel Host”, Science, 264 (1994) 1757-1759.
[8] 邱顯堂,“變色材料”,化工,第38卷第2期,(1991),74-89頁。
[9] 何國川,“電化學與無窗簾時代”,化工,第37卷第3期,(1990),32-42頁。
[10] 楊明長,“電致色變系統簡介”,化工,第40卷第2期,(1993),64-68頁。
[11] 焦小浣、胡文旭、陳玲、孫玉晴,“光窗透明材料的實驗研究”,太陽能學報,第18卷第4期,(1997),365-370頁。
[12] The catalogue of Pilkington company, Dandenong South, VIC, Australia (1996).
[13] G. Sberveglieri, “Recent developments in semiconducting thin-film gas sensors”, Sens. Actuat. B, 23 (1995) 103-109.
[14] P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka and G. D. Stucky, “Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks”, Nature, 396 (1998) 152-155.
[15] J. Robertson, “Amorphous carbon cathodes for field emission display”, Thin Solid Films, 296 (1997) 61-65.
[16] N. Yamazoe and N. Miura, “Environmental gas sensing”, Sens. Actuat. B, 20 (1994) 95-102.
[17] 張莉毓,“奈米介孔氧化鎢在NOX氣體感測器和光致變色之應用",國立成功大學材料科學及工程學系博士論文,(2005),102-108頁.
[18] 高嘉珮,“中孔洞矽氧分子篩合成條件之控制及動力學研究”,國立台灣大學化學研究所碩士論文,(2000),5-6頁。
[19] B. Lindmanm and H. Wennerstrom, Micelles: Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, (1980), p.6.
[20] Y. C. Lin and S. H. Chen, “Ion correlations and counter-ion condensation in ionic micellar solutions”, J. Phys.-Condens. Matter., 8 (1996) A169-A187.
[21] W. Cheng, E. Baudrin, B. Dunn and J. I. Zink, “Synthesis and electrochromic properties of mesoporous tungsten oxide”, J. Mater. Chem., 11 (2001) 92-97.
[22] L. G. Teoh, Y. M. Hon, J. Shieh, W. H. Lai and M. H. Hon, “Sensitivity Properties of a Novel NO2 Gas Sensor Based on Mesoporous WO3 Thin Film”, Sens. Actuat. B, 96 (2003) 219-225.
[23] L. G. Teoh, I. M. Hung, J. Shieh, W. H. Lai and M. H. Hon, “High Sensitivity Semiconductor NO2 Gas Sensor Based on Mesoporous WO3 Thin Film”, Electrochem. Solid State Lett., 6 (2003) G108-G111.
[24] J. Y. Ying, C. P. Mehnert and M. S. Wong, “Synthesis and Applications of Supramolecular-Templated Mesoporous Materials”, Angew Chem. Int. Ed., 38 (1999) 56-77.
[25] F. S. Bates and G. H. Fredrickson, “Block copolymers-designer soft materials ”, Phys. Today, 52 (1999) 32-38.
[26] S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd Ed., Academic Press, New York, (1982) chap. 1-2, 1-110.
[27] S. A. Davis, S. L. Burkett, N. H. Mendelson, and S. Mann, “Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases”, Nature, 385 (1997) 420-423.
[28] G. Ertl, H. Knozinger and J. Weitkamp, Handbook of Heterogeneous Catalysis, VCHD-69457, Deinheim, (1997) volume 3, p.1508.
[29] H. Dislich, Thin Film from the Sol-Gel Process, Sol-Gel Technology for Thin Films, Fibers, Performs, Electrons and Specialty Shapes, Edited by Lisa C. Klein, Noyes Publications, (1988), 50-56.
[30] H. Dislich and P. Hinz, “History and principles of the sol-gel process and some new multicomponent oxide coatings”, J. Non-Cryst. Solids, 48 (1982) 11-16.
[31] L. L. Hench and J. K. West, “The Sol-Gel Process”, Chem. Rev., 90 (1990) 33-72.
[32] W. H. Lai, L. G. Teoh, Y. H. Su, J. Shieh and M. H. Hon, “Hydrolysis reaction on the characterization of wormhole-like mesoporous tungsten oxide”, J. Alloy Compd., 438 (2007) 247-252.
[33] C. D. E. Lakeman, J. F. Campion, and D. A. Payne, “Factors affecting the sol-gel processing of PZT thin layer”, Ceramic Transaction, 25 (1992) 413-439.
[34] P. M. Woodward, A. W. Sleight and T. Vogt, “Ferroelectric tungsten trioxide”, J. Solid State Chem., 131 (1997) 9-17.
[35] T. B. Massalski, H. Okamoto, P. R. Subramanian and Linda Kacprzak, Binary alloy phase diagrams, 2nd Ed., ASM International, Ohio, USA, (1990) volume 3, 2933-2935.
[36] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., Wiley-Interscience Publication, New York, (1975) chap. 17, 841-912.
[37] B. Gautheron, M. Labeau, G. Delabouglise and U. Schmatz, “Undoped and Pd-doped SnO2 thin films for gas sensors”, Sens. Actuat. B, 16 (1993) 357-362.
[38] M. Brogren, G. L. Harding, R. Karmhag, C. G. Ribbing, G. A. Niklasson and L. Stenmark, “Titanium-aluminium-nitride coatings for satellite temperature control”, Thin Solid Films, 370 (2000) 268-277.
[39] A. Donnadieu, “Electrochromic materials”, Mater. Sci. Eng. B, 3 (1989) 185-195.
[40] B. Reichman and A. J. Bard, “The electrochromic process at WO3 electrodes prepared by vacuum evaporation and anodic oxidation of W”, J. Electrochem. Soc., 126 (1979) 583-591.
[41] T. He, Y. Ma, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang and J. Yao, “Photochromism of WO3 colloids combined with TiO2 nanoparticles”, J. Phys. Chem. B, 106 (2002) 12670-12676.
[42] A. Rougier, F. Portemer, A. Quede and M. El Marssi, “Characterization of pulsed laser deposited WO3 thin films for electrochromic devices”, Appl. Sur. Sci., 153 (1999) 1-9.
[43] C. Bechinger, E. Wirth and P. Leiderer, “Photochromic coloration of WO3 with visible light”, Appl. Phys. Lett., 68 (1996) 2834-2836.
[44] C. G. Grandqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D. Ronnow, M. Stromme Matsson, M. Veszelei and G. Vaivars, “Recent advances in electrochromics for smart windows applications”, Sol. Energy, 63 (1998) 199-216.
[45] S. M. Sze, Semiconductor sensors, John Wiley & Sons, New York, (1994) chap. 8, 383-410.
[46] C. Xu, J. Tamaki, N. Miura and N. Yamazoe, “Grain size effects on gas sensitivity of porous SnO2-Based elements”, Sens. Actuat. B, 3 (1991) 147-155.
[47] Y. Shimizu and M. Egashira, “Basic aspects and challenges of semiconductor gas sensors”, Mater. Res. Bull., 24 (1999) 18-24.
[48] M. J. Madou and S. R. Mirrion, Solid-state Background, in : Chemical Sensing with Solid State Devices, Academic Press, Boston, (1989) chap. 3, 67-104.
[49] M. Penza, M. A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci and G. Cassano, “Tungsten trioxide (WO3) sputtered thin films for a NOX gas sensor”, Sens. Actuat. B, 50 (1998) 9-18.
[50] C. Kittel, Introduction to solid state physics, John Wiley & Sons, New York, (1991) chap. 6, 125-156.
[51] R. G. Forbes, “Low-macroscopic-field electron emission from carbon films and other electrically nanostructured heterogeneous materials: hypotheses about emission mechanism”, Solid-State Electron., 45 (2001) 779-808.
[52] R. H. Folwer and L. W. Nordheim, “Electron emission in intense electric fields”, Proc. R. Soc. London, Ser. A, 119 (1928) p. 173.
[53] J. E. Jaskie, “Diamond-based field-emission displays”, Mater. Res. Bull., 21 (1996) 59-64.
[54] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard and K. Kern, “Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett., 76 (2000) 2071-2073.
[55] W. A. de Heer, A. Châtelain and D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source”, Science, 269 (1995) 1179-1180.
[56] S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. J. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties”, Science, 283 (1999) 512-514.
[57] Z. S. Wu, S. Z. Deng, N. S. Xu, J. Chen, J. Zhou and J. Chen, “Needle-shaped silicon carbide nanowires: Synthesis and field electron emission properties”, Appl. Phys. Lett., 80 (2002) 3829-3831.
[58] J. Chen, S. Z. Deng, N. S. Xu, S. H. Wang, X. G. Wen, S. H. Yang, C. L. Yang, J. N. Wang and W. K. Ge, “Field emission from crystalline copper sulphide nanowire arrays”, Appl. Phys. Lett., 80 (2002) 3620-3622.
[59] G. C. Xi, Y. K. Liu, X. Y. Liu, X. Q. Wang and Y. T. Qian, “Mg-Catalyzed Autoclave Synthesis of Aligned Silicon Carbide Nanostructures”, J. Phys. Chem. B, 110 (2006) 14172-14178.
[60] J. S. Suh, K. S. Jeong, J. S. Lee and I. Han, “Study of the field-screening effect of highly ordered carbon nanotubes arrays”, Appl. Phys. Lett., 80 (2002) 2392-2394.
[61] J. M. R. Weaver and D. W. Abraham, “High resolution atomic force microscopy potentiometry”, J. Vac. Sci. Technol. B, 9 (1991) 1559-1561.
[62] S. Kitamura and H. Iwatsuki, “High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope”, Appl. Phys. Lett., 72 (1998) 3154-3156.
[63] W. Mönch, Semiconductor Surfaces and Interfaces, in Springer Series in Surface Science 26, Springer, Berlin, (1993) chap. 2-6, 21-104.
[64] Z. P. Huang, Y. Tu, D. L. Carnahan and Z. F. Ren, “Field Emission of Carbon Nanotubes”, Encyclopedia of Nanoscience and Nanotechnology, 1st Ed., American Scientific Publishers, USA, (2004) volume 3, 401-416.
[65] L. Nilsson, O. Groening, P. Groening and L. Schlapbach, “Collective emission degradation behavior of carbon nanotube thin-film electron emitters”, Appl. Phys. Lett., 79 (2001) 1036-1038.
[66] R. Seelaboyina, J. Huang, J. Park, D. H. Kang and W. B. Choi, “Multistage field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions”, Nanotechnology, 17 (2006) 4840-4844.
[67] W. H. Lai, J. Shieh, L. G. Teoh, I. M. Hung, C. S. Liao and M. H. Hon, “Effect of copolymer and additive concentrations on the behaviors of mesoporous tungsten oxide”, J. Alloy Compd., 396 (2005) 295-301.
[68] E. Ozkan, S. H. Lee, P. Liu, C. E. Tracy, F. Z. Tepehan, J. R. Pitts, and S. K. Deb, “Electrochromic and optical properties of mesoporous tungsten oxide films”, Solid State Ionics, 149 (2002) 139-146.
[69] B. Lee, T. Yamashita, D. Lu, J. N. Kondo and K. Domen, “Single-crystal particles of mesoporous niobium-tantalum mixed oxide”, Chem. Mater., 14 (2002) 867-875.
[70] B. Pecquenard, H. Lecacheux, J. Livage and C. Julien, “Orthorhombic WO3 formed via a Ti-Stabilized WO3∙1/3 H2O Phase”, J. Solid State Chem., 135 (1998) 159-168.
[71] E. Rossinyol, J. Arbiol, F. Peiró, A. Cornet, J. R. Morante, B. Tian, T. Bo and D. Zhao, “Nanostructured metal oxides synthesized by hard template method for gas sensing applications”, Sens. Actuators B, 109 (2005) 57-63.
[72] R. Solarska, B. D. Alexander, J. Augustynski, “Electrochromic and structural characteristics of mesoporous WO3 film prepared by a sol-gel method”, J. Solid State Electrochem., 8 (2004) 748-756.
[73] P. Schmidt-Winkel, P. Yang, D. I. Margolese, B. F. Chmelka, G. D. Stucky, “Fluoride-induced hierarchical ordering of mesoporous silica in aqueous acid-syntheses”, Adv. Mater., 11 (1999) 303-307.
[74] L. G. Teoh, J. Shieh, W. H. Lai and M. H. Hon, “Effects of mesoporous structure on grain growth of nanostructured tungsten oxide”, J. Mater. Res., 19 (2004) 2687-2693.
[75] R. W. Boyd, Nonlinear Optics, Academic Press, United Kingdom, (1992) chap. 9, 372-376.
[76] W. H. Lai, J. Shieh, L. G. Teoh and M. H. Hon, “Fabrication of one-dimensional mesoporous tungsten oxide”, Nanotechnology, 17 (2006) 110-115.
[77] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 5th Ed., McGraw-Hill, Singapore, (1993) chap. 17, 501-504.
[78] W. H. Lai, L. G. Teoh, Y. H. Su, J. Shieh and M. H. Hon, “Effect of Calcination on Crystallinity for Nanostructured Development of Wormhole-Like Mesoporous Tungsten Oxide”, J. Am. Ceram. Soc., 90 (2007) 4073-4075.
[79] J. L. Keddie and E. P. Giannelis, “Effect of Heating Rate on the Sintering of Titanium Dioxide Thin Films: Competition Between Densification and Crystallization”, J. Am. Ceram. Soc., 74 (1991) 2669-2671.
[80] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley; Reading, MA, (1978) chap. 3, 81-106.
[81] J.-J. Feng, J.-J. Xu, and H.-Y. Chen, “Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide,” Electrochem. Commun., 8 (2006) 77-82.
[82] J. Yuan, Y. Zhang, J. Le, L. Song, and X. Hu, “New templated method to synthesize electrochromic mesoporous tungsten oxide,” Mater. Lett., 61 (2007) 1114-1117.
[83] D.-Y. Zhao, Q.-H. Huo, J.-L. Feng, B. F. Chmelka and G. D. Stucky, “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Order, Hydrothermally Stable, Mesoporous Silica Structures”, J. Am. Chem. Soc., 120 (1998) 6024-6036.
[84] X. Wei and P. K. Shen, “Electrochromics of single crystalline WO3 center dot H2O nanorods,” Electrochem. Commun., 8 (2006) 293-298.
[85] S. T. Li and M. S. El-Shall, “Synthesis and characterization of photochromic molybdenum and tungsten oxide nanoparticles”, Nanostruct. Mater., 12 (1999) 215-219.
[86] L. G. Teoh, J. Shieh, W. H. Lai, I. M. Hung and M. H. Hon, “Structure and optical properties of mesoporous tungsten oxide”, J. Alloy Compd., 396 (2005) 251-254.
[87] W. H. Lai, Y. H. Su, L. G. Teoh, Y. T. Tsai and M. H. Hon, “Synthesis of tungsten oxide particles by chemical deposition method”, Materials Transactions, 48 (2007) 1575-1577.
[88] S. K. Deb, “Optical and photoelectric properties and colour centres in thin films of tungsten oxide”, Philos. Mag., 27 (1973) 801-822.
[89] 蔡嬪嬪、曾明漢,“氣體感測器之簡介、應用及市場”,材料與社會,第68期,(1992),50-56頁。
[90] C. R. Martin, “Membrane-based synthesis of nanomaterials”, Chem. Mater., 8 (1996) 1739-1746.
[91] R. V. Parthasarathy, K. L. N. Phani and C. R. Martin, “Template synthesis of graphitic nanotubules”, Adv. Mater., 7 (1995) 896-897.
[92] S. De Vito and C. R. Martin, “Toward colloidal dispersions of template-synthesized polypyrrole nanotubules”, Chem. Mater., 10 (1998) 1738-1741.
[93] X.-Y. Song, W. Cao, M. R. Ayers and A. J. Hunt, “Carbon nanostructures in silica aerogel composites”, J. Master. Res., 10 (1995) 251-254.
[94] J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R. Yang and Z. L. Wang, “Growth and field-emission property of tungsten oxide nanotips arrays”, Appl. Phys. Lett., 87 (2005) 223108.
[95] Y. Li, Y. Bando and D. Golberg, “Quasi-Aligned Single-Crystalline W18O49 Nanotubes and Nanowires”, Adv. Mater., 15 (2003) 1294-1296.
[96] G. Fursey, Field Emission in Vacuum Microelectronics, Kluwer Academic / Plenum Publishers, New York, (2005) chap. 3, 31-56.
[97] M. J. Colgan and M. J. Brett, “Field emission from carbon and silicon films with pillar microstructure”, Thin Solid Films, 389 (2001) 1-4.
[98] Y. Baek, Y. Song and K. Yong, “A Novel Heteronanostructure System: Hierarchical W Nanothorn Arrays on WO3 Nanowhiskers” Adv. Mater., 18 (2006) 3105-3110.
[99] T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin and M. N. Chang, “Hydrogen plasma dry etching method for field emission application”, Appl. Phys. Lett., 88 (2006) 263118.
[100] S. Sadewasser, Th. Glatzel, M. Rusu, A. Jäger-Waldau and M. Ch. Lux-Steiner, “High-resolution work function imaging of single grains of semiconductor surfaces”, Appl. Phys. Lett., 80 (2002) 2979-2981.
[101] 顏榮賢,“感應耦合電漿化學氣相沉積法成長奈米碳管之研究",國立成功大學材料科學及工程學系博士論文,(2005),2-3頁.
[102] X. Ma, E. Wang, W. Z. Zhou, David A. Jefferson, J. Chen, S. Z. Deng, N. S. Xu and J. Yuan, “Polymerized carbon nanobells and their field-emission properties”, Appl. Phys. Lett., 75 (1999) 3105-3107.
[103] J.-M. Bonard, J.-P. Salvetat, T. Stöckli, W. A. de Heer, L. Forró and A. Châtelain, “Field emission from single-wall carbon nanotube films”, Appl. Phys. Lett., 73 (1998) 918-920.
[104] G. Margaritondo and P. Perfetti, Heterojunction Band Discontinuities: Physics and Device Applications, Elsevier, Amsterdam (1987) Part Ⅰ.
[105] A. Wadhawan, R. E. Stallcup II, K. F. Stephens II, J. M. Perez and I. A. Akwani, “Effects of O2, Ar, and H2 gases on the field-emission properties of single-walled and multiwalled carbon nanotubes”, Appl. Phys. Lett., 79 (2001) 1867-1869.
[106] Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang and A. R. Krauss, “Field emission from nanotube bundle emitters at low fields”, Appl. Phys. Lett., 70 (1997) 3308-3310.