簡易檢索 / 詳目顯示

研究生: 張賀淇
Chang, Ho-Chi
論文名稱: 以EBSD分析技術探討高應變時石英雲母片岩中石英的變形顯微組織
Development of EBSD Analysis of Deformed Microstructure of Quartz in Quartz-Mica Schist after High Straining
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 66
中文關鍵詞: EBSD剪切帶石英晶粒形貌晶粒方位
外文關鍵詞: EBSD, shear deformation, quartz, grain morphology, grain orientation
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要係以EBSD分析技術針對台灣本島高度應變石英雲母片岩中之石英為研究材料,進行其晶粒方位與變形行為之分析。
    首先利用XRD以及EBSD、EDS等分析方法確認石英雲母片岩中含有石英、鈉長石、雲母三種礦物。之後為了探討石英之變形行為,而將石英的晶粒方向依{0002}方位可區分為三種不同類型:(0002)晶面平行於RD方向、(0002)晶面平行於ND方向、(0002)晶面平行於RD45度。結果顯示特定晶面的極圖發現部分方位的晶粒產生晶體旋轉(orientation spread)現象,此結果顯示晶粒在變形過程中發生轉動的情形。此外,通常晶體旋轉的晶粒,其kernel average misorientation (KAM)的平均值較高。因此,可以藉由KAM分析晶粒的變形量之大小,同時長寬比倒數之結果發現晶粒愈接近等軸晶的形貌,其變形程度愈低。
    之後為了瞭解石英晶粒變形之機構,本研究藉Schmid factor預測不同方位的晶粒所啟動的滑移系統。從結果來看,{0002}晶面平行於RD方向的晶粒,主要以Basal滑移系統為主。{0002}晶面平行於ND方向的晶粒,主要以Prismatic滑移系統為主。{0002}晶面平行於RD45度的晶粒,主要以Basal或者Prismatic滑移系統為主。
    最後針對大面積剪切帶進行EBSD分析,發現受到剪切應變作用下石英晶粒會以 {0002}晶面平行於ND方向的晶粒稱Type-II存在,表示{0002}晶面指向ND方向較在為受到剪切應變作用下不易轉動而較穩定。因此石英晶粒主要以 {0002}晶面平行於ND方向的晶粒可以視為剪切應變下穩定方位。

    This study used EBSD analysis technology to establish a series of analyzes and discussions on the grain orientation and deformation behavior of quartz in the highly strained quartz mica schist in Taiwan Island.
    Firstly, XRD, EBSD, and EDS were used to confirm that the quartz-mica schist contained three minerals: quartz, albite, and mica. Then, the crystal grain direction of quartz is divided into three different types by using different {0002} crystal plane orientations: {0002} crystal plane parallel to the RD direction, {0002} crystal plane parallel to the ND direction, and {0002} crystal plane parallel to the RD direction under 45O tilted angle. With the results of the pole figure of specific crystal planes, it can be found that some grains have orientation spread, which means that the grains rotate after deformation. Usually, the grains with orientation spread have a higher average KAM value. The degree of deformation of grains is analyzed by KAM, and the reciprocal of the aspect ratio is calculated to illustrate the relationship between grain morphology and deformation. The closer the grain is to the shape of equiaxed crystals, the lower the degree of deformation.

    中文摘要 I Extended Abstract III 誌謝 XII 目錄 XIV 圖目錄 XVII 表目錄 XXI 第一章 前言 1 第二章 文獻回顧 3 2.1 台灣地質環境 3 2.2 六方晶系的剪切應變及其優選方位 4 第三章 實驗及分析方法 6 3.1 實驗材料 6 3.2 試片製備 7 3.3 石英雲母片岩結構與成分分析 8 3.4 石英雲母片岩之EBSD分析 9 3.4.1 試片座標與EBSD座標之關係 9 3.4.2 KAM分析 11 3.4.3 滑移系統之預測分析 13 3.5 剪切變形層的EBSD分析 16 第四章 實驗結果 18 4.1 石英雲母片岩之結構與成分分析 18 4.2 石英雲母片岩中石英之EBSD分析 25 4.2.1 晶粒方位與極圖分析 26 4.2.2 KAM分析 31 4.3 石英雲母片岩之剪切變形層EBSD分析 39 4.3.1 方位分布函數分析 40 4.3.2 晶粒形貌與變形程度分析 47 第五章 討論 48 5.1 晶粒重建與晶粒形貌之關係 48 5.2 晶粒形貌與變形之關係 51 5.3 晶粒方位與滑移系統之關係 55 5.4 剪切變形對晶粒方位之影響 60 第六章 結論 62 參考文獻 64

    參考文獻
    1. C.-S. Chen, M.J. Unsworth, C.-W. Chiang, E. Bertrand, and F.T. Wu, Subducted and Exhumed Crust beneath Taiwan Imaged by Magnetotelluric Data, in New Frontiers in Tectonic Research-General Problems, Sedimentary Basins and Island Arcs. 2011, New York, USA: IntechOpen.
    2. D.J. Prior, A.P. Boyle, F. Brenker, M.C. Cheadle, A. Day, G. Lopez, L. Peruzzi, G. Potts, S. Reddy, and R. Spiess, The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 1999. 84: pp. 1741-1759.
    3. G.-R. Ho, T.B. Byrne, J.-C. Lee, L. Mesalles, C.-W. Lin, W. Lo, and C.-P. Chang, A new interpretation of the metamorphic core in the Taiwan orogen: A regional-scale, left-lateral shear zone that accommodated highly oblique plate convergence in the Plio-Pleistocene. Tectonophysics, 2022. 833: p. 229332.
    4. B. Beausir, L.S. Tóth, and K.W. Neale, Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear. Acta Materialia, 2007. 55: pp. 2695-2705.
    5. F. Fueten, Tectonic interpretations of systematic variations in quartz c-axis fabrics across the Thompson Belt. Journal of Structural Geology, 1992. 14: pp. 775-789.
    6. M.A. Meyers and K.K. Chawla, Mechanical behavior of materials. 2008, New York, USA: Cambridge university press.
    7. 劉光泰, 探討脈衝電鍍法之電流密度及頻率對奈米銅雙晶之影響. 國立成功大學材料科學及工程學系碩士論文2008.
    8. S. Schmid and M. Paterson, Strain analysis in an experimentally deformed oolitic limestone. Energetics of Geological Processes: Hans Ramberg on his 60th birthday, 1977: pp. 67-93.
    9. R. Heilbronner and J. Tullis, Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite. Journal of Geophysical Research: Solid Earth, 2006. 111: B10202.
    10. R. Cirrincione, E. Fazio, G. Ortolano, A. Pezzino, and R. Punturo, Fault-related rocks: deciphering the structural–metamorphic evolution of an accretionary wedge in a collisional belt, NE Sicily. International Geology Review, 2012. 54: pp. 940-956.
    11. S.W. de Oliveira Rodrigues, M.A.C. Martins-Ferreira, F.M. Faleiros, M.d.C.C. Neto, and M.T.A.G. Yogi, Deformation conditions and quartz c-axis fabric development along nappe boundaries: The Andrelândia Nappe System, Southern Brasília Orogen (Brazil). Tectonophysics, 2019. 766: pp. 283-301.
    12. R. Graziani, C. Montomoli, S. Iaccarino, L. Menegon, L. Nania, and R. Carosi, Structural setting of a transpressive shear zone: insights from geological mapping, quartz petrofabric and kinematic vorticity analysis in NE Sardinia (Italy). Geological Magazine, 2020. 157: pp. 1898-1916.
    13. R. Kilian and R. Heilbronner, Analysis of crystallographic preferred orientations of experimentally deformed Black Hills Quartzite. Solid Earth, 2017. 8: pp. 1095-1117.
    14. G. Lister and U. Dornsiepen, Fabric transitions in the Saxony granulite terrain. Journal of Structural Geology, 1982. 4: pp. 81-92.
    15. Z.-X. Zhang, Rock fracture and blasting: theory and applications. 2016, Oxford, UK: Butterworth-Heinemann..
    16. L.F. Morales, G.E. Lloyd, and D. Mainprice, Fabric transitions in quartz via viscoplastic self-consistent modeling part I: Axial compression and simple shear under constant strain. Tectonophysics, 2014. 636: pp. 52-69.
    17. H.-R. Wenk, R. Yu, S. Vogel, and R. Vasin, Preferred orientation of quartz in metamorphic rocks from the Bergell Alps. Minerals, 2019. 9: pp. 277.
    18. A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field, Electron backscatter diffraction in materials science. Vol. 2. 2009, New York, USA: Springer.

    無法下載圖示 校內:2028-07-30公開
    校外:2028-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE