| 研究生: |
蔡吉明 Tsai, Chi-ming |
|---|---|
| 論文名稱: |
以有機金屬沉積法成長具有自然粗糙化界面之
高效率氮化銦鎵發光二極體與元件特性研究 High-efficiency InGaN LEDs with Naturally roughed interfaces grown by MOCVD |
| 指導教授: |
張守進
Chang, Shoou-Jinn 許進恭 Sheu, Jinn-Kong |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 氮化鎵 、有機金屬化學氣相沉積 |
| 外文關鍵詞: | GaN, MOCVD |
| 相關次數: | 點閱:54 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們以有機金屬化學氣相沉積法之技術成長氮化銦鎵/氮化鎵材料之藍光與綠光的多層量子井結構發光二極體以及研究涵蓋光電特性的相關性質。
首先,我們致力於氮化鎵系列材料發光二極體的表面形態之處理技術,以磊晶成長技術形成的自然粗糙介面(氮化鎵與空氣間及氮化鎵與藍寶石基板間之介面)之構造達到改善光取出效率之目的。
而以此技術自我組成的表面構造有V形凹洞與島狀凸塊兩種。並且V形凹洞與島狀凸塊的空間尺寸與密度可藉由調變磊晶成長條件之成長速率、反應源的五族元素與三族元素比例、成長環境與成長溫度以得到良好的控制。由實驗結果顯示以此磊晶技術自我組成的表面構造製成之氮化鎵系列材料發光二極體比一般會造成反射的表面構造(及平滑表面) 之發光二極體,其亮度輸出功率有效地提升至少50﹪。
雖然發光二極體元件表面的V形凹洞構造可達到粗化氮化鎵與空氣間(或氮化鎵與封裝用樹脂間)的介面因而增加光取出效率,但V形凹洞構造會形成漏電流路徑而導致不良的抗靜電特性。這是因為V形凹洞構造為成串磊晶錯位在表面的終止處,並且在以p型氮化鎵磊晶層的密集V形凹洞構造亦與貫穿發光主動層磊晶錯位相關。因此,為了保持甚至增強抗靜電特性,應該減少在p型氮化鎵磊晶層的V形錯位。在此研究中,我們採用插入一層高溫成長的p型氮化鎵磊晶層以研製出以V形凹洞構造為表面的高抗靜電能力與高效率之氮化鎵系列材料發光二極體。此種發光二極體具備抑制貫穿整個磊晶層之錯位,因此相較於一般以V形凹洞構造為表面之氮化鎵系列材料發光二極體,其有更良好的抗靜電特性。
此外,我們研究發展了將鎂處理之製程結合在成長p型氮化鎵接觸層過程中斷磊晶成長之技術,應用在氮化鎵系列材料發光二極體之表面磊晶成長出高密度的島狀凸塊構造(即截形錐體構造)。此新型表面構造能有效地增強氮化鎵系列材料發光二極體之光取出效率。由實驗結果顯示,以截形錐體構造為表面之氮化鎵系列材料發光二極體具備輸出功率增強60﹪的特性。其功率增強之原因為粗化的發光二極體表面可縮短光路徑的長度進而提升光取出效率。
在此研究中,我們也展示了以矽烷處理製程方法在氮化鎵系列材料發光二極體之氮化鎵與藍寶石基板間之介面進行即時粗化的技術。此技術先在藍寶石表面形成具有奈米等級凹洞之氮化矽薄膜層,其效果類似具備圖案的藍寶石基板。經過磊晶成長後,以透射電子顯微鏡可觀察在氮化鎵與藍寶石基板介面有多量空隙存在。當操作在20毫安培時,以矽烷處理製作之氮化鎵系列材料發光二極體與未以矽烷處理製作之氮化鎵系列材料發光二極體,其平均輸出光功率分別為18.0與15.6毫瓦,意即矽烷處理製程技術可提升15﹪的輸出功率。此主因為在氮化鎵與藍寶石基板間介面產生自然粗化之散射現象,可增加發光二極體中由主動層產生之光子射出的機率。上述的主題將在此論文中詳細地討論。
In this dissertation, high-efficiency blue and green InGaN/GaN multiple- quantum well (MQW) light emitting diodes(LEDs) have been grown by metalorganic chemical vapor phase deposition (MOCVD) technique, and related characterizations including optical and electrical properties were also studied.
In order to improve the light extraction efficiency(LEE) by means of naturally interface(GaN/air or GaN/sapphire interface) texturing during epitaxial growth, we first focused our efforts on the manipulation of surface morphology in GaN-based LEDs. The self-assembled surface textures including V-shaped pits and bump islands. The size and density of these pits or bump islands could well controlled by changing growth conditions such as growth rate, V/III ratio of precursors, growth ambient and growth temperature. Experimental results indicated that the self-assembled surface textures on GaN-based LEDs could effectively enhance light output power at least 50 % compared to conventional LEDs with specular(i.e. smooth) surface.
Although the V-shaped pits on a LED’s surface can lead to a rough GaN/air(or resin) interface, thereby enhancing the LEE, these V-shape pits will become a leakage path that will lead to worse ESD characteristics. The V-shape pits also appears as a result of surface termination of threading dislocations , and the dense V-shaped pits found on p-GaN top layer were related to threading dislocations intersecting the active layer. Therefore, in order to maintain or enhance ESD characteristics, pit-related TDs on p-GaN layer should be minimized. In this study, a high-temperature-grown (HTG) p-GaN insertion layer was adopted to achieve a high ESD and efficiency GaN-based LEDs with V-shaped pits on surface. The GaN-based LEDs with the HTG p-GaN insertion layer could effectively suppress the pits-related TDs to intersect the whole layer structure and thereby leads to the better ESD characteristics compared with those of conventional GaN-based LEDs with V-shape textured surface.
On the other hand, we developed a “Mg-treatment “ process combined with a growth interrupt performed during the growth of p-GaN contact layer to lead to the formation of desne bump islands(i.e., truncated pyramids) on the GaN-based LEDs’ surface. The novel surface textures could effectively enhance the LEE of GaN LEDs. Experimental results indicated that GaN-based LED with the truncated pyramids on the surface exhibit an enhancement in output power of around 60 %. This enhancement can be attributed to that a rough LED surface could result in a reduction of photon path length for light extraction.
In this study, we also demonstrated an in-situ roughening technique at the GaN/sapphire interface in GaN-based LEDs using a silane-treatment (SiH4-treatment) process that forms a thin SiNx layer with nanometer-sized holes on the sapphire surface which behave like a patterned sapphire substrate. After epitaxial growth, a plurality of voids at the GaN/sapphire interface was observed according to the transmission electron microscopy analysis. With a 20 mA current injection, the results indicated that the typical output power of light-emitting diodes grown with and without the SiH4-treatment process are approximately 18.0 and 15.6 mW, respectively. In other words, the output power could be enhanced by 15 percent with the use of the SiH4-treatment process. The enhancement of output power is mainly due to light scattering at the naturally-textured GaN/sapphire interface, which can lead to a higher escape probability for the photons emitted from the active layer in a LED. The aforesaid topics will be discussed in detail in this dissertation.
Chapter 1
References
1. S. Guha, J.M. Depuydt, M.A. Haase, J. Qiu, and H. Cheng, Appl. Phys. Lett. 63,
3300 (1993).
2. Y.-F. Wu, B.P. Keller, D. Kapolnek, P. Kozodoy, S.P. Denbaars, and U.K. Mishra,
Appl. Phys. Lett. 69, 1438 (1996).
3. H. Otsuka,, K. Yamanaka,, H. Noto , Y. Tsuyama , S. Chaki , A. Inoue, and. Lyaza,” Over 57% Efficiency C-band GaN HEMT High Power Amplifier withInternal Harmonic Manipulation Circuits” Microwave Symposium Digest, 2008 IEEE MTT-S International, pp.311-314,15-20 June 2008 and references therein.
4. S. Guha, J. M. Depuydt, M.A. Haase, J. Qiu, and H. Cheng, Appl. Phys. Lett. 63,
3300 (1993).
5. Y. Matsushita, T. Uetani, T. Kunisato, J. Suzuki, Y. Ueda, K. Yagi, T. Yamaguchi, T. Niina, Jpn. J. Appl. Phys. Part 1 34, 1833 (1995).
6. J.D. Brown, J.T. Swindell, M.A.L. Johnson, Yu Zhonghai, J.F. Schetzina, G.E. Bulman, K. Doverspike, S.T. Sheppard, T.W. Weeks, M. Leonard, H.S. Kong, H. Dieringer, C. Carter, J.A. Edmond, Nitride Semiconduct or Symposium, Mat. Res. Soc., p. 1179-84 (1998).
7. S. Nakamura, M. Senoh, N. Iwasa, and S.-I.Nagahama, Appl. Phys. Lett. 67, 1868(1995).
8. S. Nakamura, J. Cryst. Growth 170, 11 (1997).
9. Z. A. Munir, and A.W. Searcy, J. Chem. Phys. 42, 4233 (1965).
10. N. Newman, J. Ross, and M. Rubin, Appl. Phys. Lett. 62, 1242 (1993).
11. S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett. 62, 2390 (1993).
12. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L21 (1989).
13. S.D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, Appl. Phys. Lett. 66, 1249 (1996).
14. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N Sawaki, J. Cryst. Growth 98, 209 (1989).
15. D. L. Barton, M. Osinski, C. J. Helms, N. H. Berg, B. S. Phillips, SPIE-Int. Soc. Opt. Eng 2694, 64 (1996).
16. Sun-Kyung Kim, Hyun Kyong Cho, Duk Kyu Bae, Jeong Soo Lee, Hong-Gyu Park, and Yong-Hee Lee,” Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer” Appl. Phys. Lett. 92, 241118 (2008) and references therein.
17. S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and, J. T. Hsu, “Characteristics of p-type Contact on GaN-Based Light Emitting Devices” IEEE Photonics Techno. Lett., Vol. 15, pp. 646-648, (2003).
18. Dong-Seok Leem, Takhee Lee and Tae-Yeon Seong,” Enhancement of the light output of GaN-based light-emitting diodes with surface-patterned ITO electrodes by maskless wet-etching”, Solid-State Electronics Volume 51, Issue 5, Pages 793-796(2007) and references therein.
19. S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei and J. K. Sheu, ” Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography”, Applied Physics Lette , 91, 013504, 2007.
20. J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei and W.C.Lai, ”InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface”, Applied Physics Letter , Vol. 88, 113505 (2006).
21. C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo and Y. K. Su, ” High Efficiency and Improved ESD Characteristics of GaN-based LEDs with Naturally Textured Surface Grown by MOCVD”, IEEE Photonics Technology Letters ,Vol. 18, No. 11, pp. 1213-1215(2006).
22. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, T. Taguchi, ”High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy” physica status solidi (a), Volume 188 Issue 1, Pages 121 – 125 (2001).
23. D. S. Wuu, W. K. Wang , W. C. Shih, R. H. Horng, C.E. Lee, W. Y. Lin, J. S. Fang,” Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates” IEEE Photonics Technology Letters, Vol. 17, No. 2, ( 2005) and references therein.
24. Lee, Y. J. Hwang, J. M. Hsu, T. C. Hsieh, M. H. Jou, M. J. Lee, B. J. Lu, T. C. Kuo, H. C. Wang, S.C. ,” Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates” IEEE Photonics Technology Letters, Vol. 18, No. 10, May 15(2006) and references therein.
Chapter 2
References
1. S. Nakamura, T. Muksi, and M. Senoh, “Candela-class high-brightness InGaN/GaN double-heterostructure Blue Light-emitting-diodes”, Appl. Phys. Lett. 64, 1687 (1994).
2. H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett., “The preparation and properties of vapour-deposited single- crystal-line GaN”, 15, 367 (1969).
3. H. M. Manasevit, F. Erdmann and W. Simpson, “The use of metalorganics in the preparation of semiconductor materials. IV. The nitrides of aluminum and gallium “, J. Electrochem. Soc., Vol. 118, 1864 (1971).
4. S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, J. Cryst. Growth. Vol. 77, 188 (1986).
5. S. Nakamura, Y. Harada, M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth “, Appl. Phys. Lett., 58, 2021 (1991).
6. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “The dependence of the electrical characteristics of the GaN epitaxial layer on the thermal treatment of the GaN buffer layer “, Appl. Phys. Lett., Vol. 48, 353 (1986).
7. S. Nakamura, “ GaN growth using GaN buffer layer”, Jpn. J. Appl. Phys., Vol. 30, L1705 (1991).
8. X. H. Wu, D. Kapolnek, E. J. Tarsa, B. heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars and J. S. Speck, “Nucleation layer evolution in metal-organic chemical vapor deposition grown GaN”, Appl. Phys. Lett., 68, 1371 (1996).
9. S. Nakamura, Jpn. J. Appl. Phys., 30, 1348 (1991).
10. H. Amano, I. Akasak, K. Hiramatsu and N. Koide, “Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate”, Thin Solid Film, 163, 415 (1988).
11. W. G. Breiland and K. P. Killeen, “A Virtual interface method for extracting growth-rates and high-temperature optical-constant from thin semiconductor-films using in-situ normal incidence reflectance”, J. Appl. Phys., 78 (11), 6726 (1995).
12. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353–355, 1986.
13. S. Nakamura, T. Mukai, and M. Senoh, “In situ monitoring and Hall measurements of GaN grown with GaN buffer layers,” J. Appl. Phys.,vol. 71, pp. 5543–5549, 1992.
14. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type conductionin Mg-doped GaN treated with low-energy electron beam irradiation,”Jpn. J. Appl. Phys., vol. 28, pp. L2112–L2114, 1989.
15. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys., vol. 31, pp.1258–1266, 1992.
Chapter 3
References
1. S. Nakamura, M. Senoh, Iwasa, N. and S. Nagahama, Appl. Phys. Lett. 67, 1868 (1995).
2. S. Ruvimov, Z. Liliental-Weber. T. Suski, J. W. Ager III, J. Washburn, J. Krueger, C. Kisielowski, E. R. Weber, H. Amano, and I. Akasaki, Appl. Phys. Lett. 69, 990 (1996).
3. E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, Appl. Phys. Lett, 71, 921 (1996).
4. Y. Z. Chiou, Y. K. Su, S. J. Chang, J. F. Chen, C. S. Chang, S. H. Liu, I. C. Lin and C. H. Chen, “Transparent TiN electrodes in GaN metal-semiconductor-metal ultraviolet photodetectors”, Jpn. J. Appl. Phys., Vol. 41, No. 6A, pp. 3643-3645, June 2002.
5. J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, “White-light emission from InGaN/GaN multi-quantum well light-emitting diodes with Si and Zn codoped active layer”, IEEE Photon. Technol. Lett., Vol. 14, No. 4, pp. 450-452, April 2002.
6. S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, "InGaN/GaN multiquantum well blue and green light emitting diodes", IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 278-283, Mar/Apr 2002.
7. C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and J. F. Chen, "High efficient InGaN/GaN MQW green LEDs with CART and DBR structures", IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 284-288, Mar/Apr 2002.
8. C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu and U. H. Liaw, "High brightness green light emitting diode with charge asymmetric resonance tunneling structure", IEEE Electron. Dev. Lett., Vol. 23, No. 3, pp. 130-132, March 2002.
9. C. H. Ko, S. J. Chang, Y. K. Su, W. H. Lan, J. F. Chen, T. M. Kuan, Y. C. Huang, C. I. Chiang, J. Webb and W. J. Lin, "On the carrier concentration and Hall mobility in GaN epitaxial layers", Jpn. J. Appl. Phys. Lett., Vol. 41, No. 3A, pp. L226-L228, March 2002.
10. J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang and Y. K. Su, "n+-GaN formed by Si implantation into p-GaN", J. Appl. Phys., Vol. 91, No. 4, pp. 1845-1848, February 2002.
11. C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, J. K. Sheu, C. H. Chen and G. C. Chi, "Low temperature activation of Mg-doped GaN in O2 ambient", Jpn. J. Appl. Phys. Lett., Vol. 41, No. 2A, pp. L112-L114, February 2002.
12. C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, "GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts", IEEE Photon. Technol. Lett., Vol. 13, No. 8, pp. 848-850, August 2001.
13. W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, "InGaN/AlInGaN light emitting diodes", IEEE Photon. Technol. Lett., Vol. 13, No. 6, pp. 559-561, June 2001.
14. Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, "GaN and InGaN metal-semiconductor-metal photodetectors with different Schottky contact metals", Jpn. J. Appl. Phys., Vol.40, No. 4B, pp. 2996-2999, April 2001.
15. C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and I. C. Lin, "Vertical high quality mirror-like facet of GaN-based devices by reactive ion etching", Jpn. J. Appl. Phys., Vol.40, No. 4B, pp. 2762-2764, April 2001.
16. S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. Chang, T. P. Chen and K. H. Huang, "Microwave treatment to activate Mg in GaN", Appl. Phys. Lett., Vol. 78, No. 3, pp. 312-313, January 2001.
17. K. S. Ramaiah, Y. K. Su, S. J. Chang, F. S. Juang and C. H. Chen, "Photoluminescence characteristics of Mg- and Si-doped GaN thin films grown by MOCVD technique", J. Crystal Growth, Vol. 220, pp. 405-412, December 2000.
18. W. C. Lai, M. Yokoyama, S. J. Chang, J. D. Guo, C. H. Sheu, T. Y. Chen, W. C. Tsai, J. S. Tsang, S. H. Chang and S. M. Sze, "Optical and electrical characteristics of CO2 laser treated Mg-doped GaN film", Jpn. J. Appl. Phys. Lett., Vol. 39, No. 11B, pp. L1138-L1140, November 2000.
19. L. W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai, J. K. Sheu” In0:23Ga0:77N/GaN MQW LEDs with a low temperatureGaN cap layer” Solid State Electron., Vol. 47, pp. 2027-2030, 2003 and references therein.
20. S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke and J. K. Sheu, ”High brightness InGaN green LEDs with an ITO on n++-SPS upper contact”, IEEE Electron Devices, Vol. 50, No. 11, pp. 2208-2212, 2003.
21. T. C. Wen, S. J. Chang, Y. K. Su, L. W. Wu, C. H. Kuo, W. C. Lai, J. K. Sheu and T. Y. Tsai, “InGaN/GaN Multiple Quantum Well Green Light-Emitting Diodes Prepared by Temperature Ramping”, Journal Electronic Materials, vol. 32, pp. 419-421, 2003
22. J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, ”Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In0.23Ga0.77N/GaN short-period superlattice tunneling contact layer”, IEEE Electron Device Letters, Vol. 22, pp. 460-462, 2001.
Chapter 4
References
1. S. Nakamura and G. Fasol, “The Bule Laser Diode” (Springer, Berlin, 1997).
2. S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High brightness InGaN blue, green and yellow light-emitting-diodes with quantum well structure”, Jpn. J. Appl. Phys., Part2, Vol. 34, pp. L797-800 1995.
3. L. H. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN”, Appl. Phys. Lett., Vol. 69, pp. 2701-2703 1996.
4. E. F. Schubert, “Light Emitting Diodes “ Cambridge University Press, pp. 185, 2003.
5. R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, F. Ren, J. C. Zolper and L. F. Lester, “High Density Plasma-Induced Etch Damage in GaN,” Mat. Res. Soc. Symp. Proc. Vol. 573, pp.271-276, 1999.
6. C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke and J. K. Sheu, ”High brightness InGaN green LEDs with an ITO on n++-SPS upper contact”, IEEE, Electron Devices, Vol. 50, No. 11, pp. 2208-2212, 2003.
7. J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, ” Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In0.23Ga0.77N/GaN short-period superlattice tunneling contact layer”, IEEE Electron Device Letters, Vol. 22, pp. 460-462, 2001.
8. C. Adelmann, N. Gogneau, E. Sarigiannidou, J. L. Rouvière, and B. Daudin, Appl. Phys. Lett. Vol.81, 3064 , 2002.
9. M. Miyamura, K. Tachibana, and Y. Arakawa, Appl. Phys. Lett. Vol. 80, 3937(2002).
10. M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, Phys. Rev. Lett. Vol. 63, 632, 1989.
11. D. J. Eaglesham, F. C. Unterwald, and D. C. Jacobson, Phys. Rev. Lett. Vol. 70, 966, 1993.
12. S. Iwanari and K. Takayanagi, Jpn. J. Appl. Phys. Vol. 30, L1978, 1991.
13. R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Do¨ hle, B. Dutta and G. Borghs, Appl. Phys. Lett., Vol. 74, 2256, 1999.
14. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, Appl. Phys. Lett., Vol.63, pp.2174-2176,1993.
15. L. W. Wu, S. J. Chang, Y. K. Su, R.W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai, J. K. Sheu, ” In0:23Ga0:77N/GaN MQW LEDs with a low temperature GaN cap layer” Solid State Electron., Vol. 47, pp. 2027-2030, 2003 and references therein.
16. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, ” 30% external quantum efficiency from surface textured, thin-film light-emitting diodes”, Appl. Phys. Lett., Vol.63, pp. 2174-2176, 1993.
17. R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Do¨ hle, B. Dutta and G. Borghs, ”Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes” Appl. Phys. Lett., Vol. 74, pp. 2256-2258, 1999.
18. S. Kitamura, K. Hiramatsu, N. Sawaki, ”Fabrication of GaN Hexagonal Pyramids on Dot-Patterned GaN-Sapphire Substrates via Selective MOVPE”, Jpn. J. Appl. Phys. 34, L1184-L1186, 1995.
19. C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo and Y. K. Su, ” High Efficiency and Improved ESD Characteristics of GaN-based LEDs with Naturally Textured Surface Grown by MOCVD”, IEEE Photonics Technology Letters, Vol. 18, No. 11, pp. 1213-1215, 2006.
20. Wierer JJ, Steigerwald DA, Krames MR, O’Shea JJ, Ludowise MJ, Christenson G, et al. High-power AlGaInN flip-chip light-emitting diodes. Appl Phys Lett 2001; 78: 3379–82.
21. J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei and W. C. Lai, ”InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface”, Applied Physics Letter, Vol. 88, 113505(2006).
22. T. Wang, J. Bai, S. Sakai and J.K.Ho, “Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes”, Appl. Phys. Lett. 78, 2617 (2001) and references therein.
23. Chichibu, S F | Shikanai, A | Deguchi, T | Setoguchi, A | Nakai, R | Nakanishi, H,” COMPARISON OF OPTICAL PROPERTIES OF GaN/AlGaN AND InGaN/AlGaN SINGLE QUANTUM WELLS”, Jpn. J. Appl.Phys , Part 1. Vol. 39, no. 4B, pp. 2417-2424. 2000.
24. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, and S. P. DenBaars,” Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures”, Appl. Phys. Lett. 73, 2006 (1998).
25. A. Vertikov , A. V. Nurmikko, K. Doverspike, G. Bulman, and J. Edmond,” Role of localized and extended electronic states in InGaN/GaN quantum wells under high injection, inferred from near-field optical microscopy”, Appl. Phys. Lett. 73, 493 (1998).
26. S. Chichibu, T. Azuhata ,T. Sota and S. Nakamura,” Luminescences from localized states in InGaN epilayers”, Appl. Phys. Lett. 70, 2822 (1997)
Chapter 5
References
1. E. F. Schubert, Light-Emitting Diodes”, pp.150-160 (Second Edition, Cambridge University Press, Cambridge, U.K., 2006.)
2. R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, F. Ren, J. C. Zolper and L. F. Lester, ”High density plasma-induced etch damage in GaN”, Mat. Res. Soc. Symp. Proc. vol. 573, pp. 271-273, 1999.
3. X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J. Shul and L. Zhang, “Electrical effects of plasma damage in p-GaN”, Appl. Phys. Lett. vol.75, pp. 2569-2571, 1999.
4. C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo and Y. K. Su, ”High efficiency and improved ESD characteristics of GaN-based LEDs with naturally textured surface grown by MOCVD”, IEEE. Photon. Technol. Lett. vol. 18, No. 11, 1213, pp. 1213-1215, 2006 and references therein.
5. J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei and W. C. Lai, ”InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface”, Appl. Phys. Lett. vol. 88, pp. 113505-1-3, 2006.
6. D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, J. S. Fang, ”Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates”, IEEE, Photonics Technology Letters, vol. 17, Issue 2, 288, pp. 288-290, 2005 and references therein.
7. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu and M. H. Pand, ”Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes”, Journal of The Electrochemical Society, vol. 153 No. 8 G765-G770, 2006 and references therein.
8. Hung-Cheng Lin Ruo-Syuan Lin Jen-Inn Chyi Chia-Ming Lee , ”Light output enhancement of InGaN light-emitting diodes grown on masklessly etched sapphire substrates”, IEEE, Photonics Technology Letters, vol. 20, No. 19, pp. 1621-1623, 2008 and references therein.
9. J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, ”Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer”, IEEE Electron Device Letters, vol. 22, pp. 460-462, 2001.
10. M. L. Lee, J. K. Sheu and C. C. Hu,” Non-alloyed Cr/Au Ohmic contacts to n-GaN ”, Applied Physics Letters, vol. 91, 182106, 2007.
11. S. Nakamura,” GaN growth using GaN buffer layer” Jpn. J. Appl. Phys., Vol. 30, pp. L1705-1707, 1991.
12. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda,” Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett. vol.48, pp. 353-355, 1986.
13. T. Kachi, K. Tomita, K. Itoh, H. Trando, “A new buffer layer for high quality GaN growth by metalorganic vapor phase epitaxy “, Appl. Phys. Lett. vol. 72, pp. 704-706, 1998.
14. Y. B. Lee, T. Wang, Y. H. Liu, J. P. Ao, Y. Izumi, Y. Lacroix, H. D. Li, J. Bai, Y. Naoi, S. Sakai, “High-Performance 348 nm AlGaN/GaN-based ultraviolet-light-emitting Diode with a SiN Buffer Layer”, Jpn. J. Appl. Phys. vol. 41 , pp. 4450-4453, 2002.
15. S. E. Park, S. M. Lim, C. R. Lee, C. S. Kim, B. O, ”Influence of SiN buffer layer in GaN epilayers”, J. Crystal Growth, vol. 249, pp. 487-490, 2003.
16. S. Sakai, T. Wang, Y. Morishima, N. Naoi, “A new method of reducing dislocation density in GaN layer grown on sapphire substrate by MOVPE”, J. Crystal Growth, vol. 221, pp. 334-350, 2000.
17. S. F. Chichibu et al., ”Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors” Nature Materials vol. 5 pp. 810-816, 2006 and references therein.
18. I. Halidou, Z. Benzarti, T. Boufaden, B. El Jani, S. Juillaguet, and M. Ramonda, “Influence of silane flow on MOVPE grown GaN on sapphire substrate by an in situ SiN treatment,” Mater. Sci. Eng., vol. 110, pp. 251–255, 2004 and references therein.
19. B. Beaumont, Ph. Venne’gue`s, and P. Gibart, “Epitaxial lateral overgrowth of GaN “, phys. stat. sol. (b) vol.227, No. 1, pp.1–43, 2001.
20. S. Nakamura, ”The Roles of Structural Imperfections in InGaN-Based blue light-emitting diodes and laser diodes”, Science, vol. 281, pp. 956-961, 1998.
21. T. Mukai and S. Nakamura, ”Ultraviolet InGaN and GaN single-quantum-well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates”, Jpn. J. Appl. Phys., vol.38, pp. 5735-5739, 1999.