簡易檢索 / 詳目顯示

研究生: 陳永其
Chen, Yung-Chi
論文名稱: 利用有限差分時域法模擬以量子自旋霍爾拓樸波導饋送縫隙天線的輻射模態
FDTD Analysis of Slot Antenna Radiation Mode Fed by Quantum Spin Hall Topological Waveguide
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 104
中文關鍵詞: 點波源拓樸波導縫隙天線有限時域差分法
外文關鍵詞: point source, topological waveguides, resonance frequency, slot antenna, FDTD
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文為利用FDTD模擬頻率60GHz的點波源和光子拓樸絕緣體產生的波導饋送縫隙天線。首先我們先對E_x點波源在縫隙天線中心激發之下進行模擬,分析其場向量和Poynting向量後,再去分析縫隙天線長度所對應的共振頻率。接著討論縫隙天線加了介電質基板和沒加介電質基板結構下不同激發源位置所激發出的共振頻率和模態分佈。再來去分析當縫隙天線對應於拓樸絕緣體不同晶格相對位置且利用E_x點波源在縫隙天線中心饋送的能量共振情形。最後會去模擬由拓樸波導饋送對應於拓樸絕緣體不同相對晶格位置縫隙天線的輻射效率。

    This paper employs FDTD simulations to study a slot antenna fed by a point surce at 60 GHz frequency and photonic topological insulators. To understand the basic characteristics of the slot antenna, we first simulate the excitation of the E_x point source at the center of the slot antenna, analyzing its field vector and Poynting vecor. To enhance the radiation efficiency of the slot antenna, we analyze the resonance frequencies corresponding to different lengths based on resonance principles. We then discuss the resonance frequencies and mode distributions excited by different source positions with and without a dielectric substrate for the slot antenna.
    To further optimize the radiation efficiency of the slot antenna, we introduce the emerging concept of photonic topological insulators. The topological edge states of these insulators prevent impedance mismatch issues between the slot antenna and the feeding point, thereby avoiding backward scattering that could affect incoming signals. To investigate the radiation behavior of the slot antenna combined with a topological insulator, we analyze the energy resonance when the slot antenna is positioned relative to different unit cells of the topological insulator, feeding energy using the E_x point source. Additionally, we observe the transmission of energy along the topological edge states under pseudo-spin excitations, demonstrating unidirectional energy propagation along these states. Finally, we compare the radiation efficiency of slot antennas at different relative lattice positions of a topological insulator under topological waveguide feeding.

    口試委員審定書 I 中文摘要 II Abstract III 誌謝 XVI 目錄 XVII 表目錄 XIX 圖目錄 XX 符號 XXV 第一章 序論 1 1.1 前言 1 1.2 研究動機 2 1.3 本文內容 2 第二章 研究相關理論 4 2.1 巴比涅原理(Babinet’s Principle) 4 2.2 表面等效原理(Surface Equivalence Principle) 5 2.3 縫隙天線(Slot Antenna) 7 2.4 特徵模態理論(Characteristic Mode Theory) 10 2.5 光子拓樸絕緣體(Photonics Topological Insulator, PTI) 10 第三章 數值模擬方法 13 3.1 有限差分法(Difference Time Domain , DTD) 13 3.2 時域有限差分法(Finite Difference Time Domain , FDTD) 15 3.3 捲積完美匹配層(Convolution Perfectly Matched Layer , CPML) 15 3.4 近場轉遠場(Near To Far Field) 20 第四章 研究結果與討論 20 4.1 點波源饋送縫隙天線 22 4.2 介電質基板對於縫隙天線的影響 27 4.3 點波源饋送基於quantum spin Hall光子拓樸絕緣體的縫隙天線 39 4.4 基於quantum spin Hall光子拓樸絕緣體縫隙天線中各種結構的分析 52 4.5 不同偽自旋激發下的quantum spin Hall光子拓樸絕緣體 55 4.6 quantum spin Hall光子拓樸絕緣體饋送縫隙天線 60 第五章 結論與未來展望 72 5.1 結論 72 5.2 未來展望 74 5.3 參考文獻 75

    [1] N. Guo, R. Qiu, S. Mo, K. Takahashi,“60-GHz millimeter-wave radio: principle, technology, and new results,” EURASIP J. Wireless Commun. Netw. 2007(1), 1–8(2007), doi:10.1155/2007/68253.
    [2] H. Daembkes, B. Adelseck, L.P. Schmidt, and J. Schroth, “GaAs MMIC Based Components and Frontends for Millimetrewave Communication and Sensor Systems,” in IEEE Microwave Systems Conf., 83–86(1995), doi: 10.1109/NTCMWS.1995.522866.
    [3] R. L. van Tuyl, “Unlicensed Millimeter Wave Communications: A New Opportunity for MMIC Technology at 60 GHz,” in IEEE GaAs IC Symp., 3–5(1996), doi: 10.1109/GAAS.1996.567624.
    [4] S. Sarkar, P. Sen, S. Pinel, C.-H. Lee, and J. Laskar, “Si-based 60 GHz 2X subharmonic mixer for multi-gigabit wireless personal area network application,” in IEEE MTT-S Int. Microw. Symp. Dig., 1830–1833(2006), doi: 10.1109/MWSYM.2006.249751.
    [5] P. Smulders, “60 GHz Radio: Prospects and Future Directions,” in Proceedings of IEEE Benelux Chapter Symposium on Communications and Vehicular Technology. , 1–8(2003).
    [6] C. R. Anderson et al.,“In-building wideband multipath characteristics at 2.5 and 60 GHz,”Proc. IEEE 56th Veh. Technol. Conf. 1, 97–101(2002), doi: 10.1109/VETECF.2002.1040310.
    [7] D. Mitra, A. Sarkhel, O. Kundu, and S. R. B. Chaudhuri, “Design of compact and high directive slot antennas using grounded metamaterial slab,” IEEE Antennas Wireless Propag. Lett. 14, 811–814(2015), doi: 10.1109/LAWP.2014.2380772
    [8] W. Liu, Y. Yin, W. Xu, and S. Zuo,“Compact open-slot antenna with bandwidth. enhancement,” IEEE Antennas Wireless Propag. Lett. 10, 850–853(2011), doi: 10.1109/LAWP.2011.2165197.
    [9] R. Azadegan and K. Sarabandi, “A novel approach for miniaturization of slot antennas,” IEEE Trans. Antennas Propag. 51(3), 421–429(2003), doi: 10.1109/TAP.2003.809853.
    [10] T.-H. Chang and J.-F. Kiang, “Compact multi-band H-Shaped slot antenna,” IEEE Trans. Antennas Propag. 61(8), 4345–4349(2013), doi: 10.1109/TAP.2013.2262666.
    [11] D. Peroulis, K. Sarabandi, and L. P. B. Katehi, BDesign of reconfigurable slot antennas, IEEE Trans. Antennas Propag. 53(2), 645–654(2005), doi: 10.1109/TAP.2004.841339.
    [12] Y. Dong and T. Itoh, “Miniaturized substrate integrated waveguide slot antennas based on negative order resonance,” IEEE Trans. Antennas Propag. 58(12), 3856–3864(2010), doi: 10.1109/TAP.2010.2078449.
    [13] R. J. Garbacz, “Modal expansions for resonance scattering phenomena,” Proc. IEEE 53(8), 856–864(1965), doi: 10.1109/PROC.1965.4064.
    [14] C. Wang, Y. Chen, and S. Yang, “Bandwidth enhancement of a dual polarized slot antenna using characteristic modes,” IEEE Antennas Wireless Propag. Lett. 58(12), 988–992(2018), doi: 10.1109/LAWP.2018.2828881.
    [15] J. Zhao, Y. Chen, and S. Yang, “In-band radar cross-section reduction of slot antenna using characteristic modes,” IEEE Antennas Wireless Propag. Lett. 17(7), 1166–1170(2018), doi: 10.1109/LAWP.2018.2836926.
    [16] J.-Y. Jan and Jia, “Bandwidth enhancement of a printed wide-slot antenna with a rotated slot,” IEEE Trans. Antennas Propag. 53(6), 2111–2114(2005), doi: 10.1109/TAP.2005.848518.
    [17] J.-F. Lin and Q.-X. Chu, “Increasing bandwidth of slot antennas with combined characteristic modes,” IEEE Trans. Antennas Propag. 66(6), 3148–3153(2018), doi: 10.1109/TAP.2018.2811846.
    [18] C. He et al., “Photonic topological insulator with broken time-reversal symmetry,”Proc. Natl Acad. Sci. USA 113, 4924–4928 (2016), doi: 10.1073/pnas.1525502113.
    [19] A. Slobozhanyuk et al., “Three-dimensional all-dielectric photonic topological insulator, ” Nat. Photonics 11, 130–136 (2017), doi: 10.1038/NPHOTON.2016.253
    [20] B. Y. Xie et al., “Second-order photonic topological insulator with corner states, ”Phys. Rev. B 98(205147), (2018), doi:10.1103/PhysRevB.98.205147.
    [21] Y. H. Yang et al., “Realization of a three-dimensional photonic topological insulator, ” Nature 565, 622–626 (2019), doi:10.1038/s41586-018-0829-0.
    [22] E. Lustig et al., “Photonictopological insulator in synthetic dimensions,” Nature 567, 356–360 (2019) , doi:10.1038/s41586-019-0943-7.
    [23] Z. Wang et al., “Observation of unidirectional backscattering-immune topological electromagnetic states,”Nature 461, 772–775 (2009) , doi:10.1038/nature08293.
    [24] John D. Kraus, Antennas for all applications 3rd, McGraw-Hill College(2001).
    [25] S. Schelkunoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,”Bell Syst. Tech. J 15, 92–112 (1936) , doi: 10.1002/j.1538-7305.1936.tb00720.x.
    [26] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley and Sons, New York(1989).
    [27] J. D. Kraus and K. R. Carver, Electromagnetics 2nd, McGraw-Hill, New York(1973).
    [28] A. E. H. Love, “I. The integration of the equations of propagation of electric waves,” Philos. Trans. R. Soc. London A 197, 1–45 (1901), doi:10.1112/PLMS/S2-10.1.91
    [29] C. A. Balanis, Antenna Theory: Analysis and Design 3rd, Copyright© by John Wiley & Sons,Inc(2005)
    [30] L. Josefsson and S. R. Rengarajan, Slotted Waveguide Array Antennas, Copyright© by the Berne Convention and the Universal Copyright Convention(2018)
    [31] Y. Chen and C.-F. Wang, Characteristic Modes, Copyright© by John Wiley & Sons, Inc(2015)
    [32] R. Garbacz and R. Turpin, ‘‘A generalized expansion for radiated and scattered fields, ’’ IEEE Trans. Antennas Propag. 19(3), 348–358(1971), doi: 10.1109/TAP.1971.1139935
    [33] R. Garbacz and D. Pozar, “Antenna shape synthesis using characteristic modes,” IEEE Trans. Antennas Propag. 30(3), 340–350(1982), doi: 10.1109/TAP.1982.1142820
    [34] R. Harrington and J. Mautz, “Computation of characteristic modes for conducting bodies,” IEEE Trans. Antennas Propag. AP-19(5), 629–639(1971), doi: 10.1109/TAP.1971.1139990
    [35] K. von Klitzing, “The quantized Hall effect,” Rev. Mod. Phys., vol. 58, no. 3, pp. 519–531, Jul. 1986, doi: 10.1103/RevModPhys.58.519.
    [36] F. D. M. Haldane, “Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the ‘Parity Anomaly, ” Phys. Rev. Lett. 61(18), 2015–2018(1988), doi: 10.1103/PhysRevLett.61.2015.
    [37] C. L. Kane and E. J. Mele, “Quantum Spin Hall Effect in Graphene,” Phys. Rev. Lett. 95(22), 226801(2005), doi: 10.1103/PhysRevLett.95.226801.
    [38] F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett. 100(1), 013904(2008), doi: 10.1103/PhysRevLett.100.013904.
    [39] L.-H. Wu and X. Hu, “Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material,” Phys. Rev. Lett. 114(22), 223901(2015), doi: 10.1103/PhysRevLett.114.223901.
    [40] Kane Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat. 14(3), 302–307(1966), doi: 10.1109/TAP.1966.1138693.
    [41] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics 114(2), 185–200(1994), doi: 10.1006/jcph.1994.1159.
    [42] J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27(5), 334–339(2000), doi: 10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A.
    [43] Allen Taflove, A. Computational Electrodynamics: The Finite-difference Time-domain Method 3rd, ©ARTECH HOUSE,Inc(2005)
    [44] 林淯星, “利用有限差分時域法比較微帶線和拓樸波導饋送的相位陣列縫隙天線輻射,” 成大光電所碩士論文 (2023), https://thesis.lib.ncku.edu.tw/thesis/detail/921e190e10801747a43f42593fbb1460/
    [45] 李佳翰, “有限差分時域法模擬微帶線液晶移相器饋送的陣列縫隙天線,” 成大光電所碩士論文 (2020), https://thesis.lib.ncku.edu.tw/thesis/detail/ea47350e4b8c35da515c31846521efca/

    無法下載圖示 校內:2029-07-31公開
    校外:2029-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE