| 研究生: |
蔡育仁 Tsai, Yu-Ren |
|---|---|
| 論文名稱: |
異向性材料內含雙線剛性異質物之互制分析 Interaction of Rigid Lines in an Anisotropic Plane Elastic Medium |
| 指導教授: |
宋見春
Sung, Jen-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 線剛性異質物 、互制 、異向性 |
| 外文關鍵詞: | rigid line, interaction, anisotropic |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討二維無限域異向性線彈性體,內含雙線剛性異質物之互制行為,應用無限域內含一中央線剛性異質物,受一集中力作用之基本解,將此問題轉換為一組以分佈力為未知函數之奇異積分方程組,而此未知的分佈力函數則分佈於另一個線剛性異質物上。利用數值方法求解此積分方程,進而求得剛性異質物尖端之應力強度因子。數值分析中,首先驗證當二維異向性材料之雙剛性異質物在相距較遠時,其結果與文獻中含單一剛性異質物之解析解相當吻合。其次,本文將針對材料異向性程度、兩剛性異質物尺寸、兩剛性異質物之距離以及剛性異質物之傾斜角度對應力強度因子之影響進行探討。
The interactions of two rigid lines in an anisotropic plane elastic medium of infinite extent under uniform loading at infinity are studied. Based on Green’s function for a point source acting in an anisotropic plane elastic medium of infinite extent with one rigid line existed, a system of singular integral equations for the unknown distributed forces densities defined on the rigid line is obtained. Numerical method is used to calculate the solutions of the singular integral equations and the stress intensity factors at rigid line tips are obtained. Accuracy of the numerical method is validated by analytical results for the problem of an anisotropic plane elastic medium of infinite extent with one rigid line under uniform loading at infinity. The effects of degree of anisotropy of the material and the parameters of relative geometry such as lengths, distances and orientations between two rigid lines on the stress intensity factors are reported.
[1] Asundi, A. and Deng, W., “Rigid inclusions on the interface between dissimilar anisotropic media,” Journal of the Mechanics and Physics of Solids, Vol. 43, No. 7, pp. 1045-1058 (1995).
[2] Atkinson, C., “Some ribbon-like inclusion problems,” International Journal of Engineering, Vol. 11, pp. 243-265 (1973).
[3] Ballarini, R., “A rigid line inclusion at a bimaterial interface,” Engineering Frarrure Mechanics, Vol. 37, No. 1, pp. l-5 (1990).
[4] Ballarini, R., “An integral equation approach for rigid line inhomogeneity problems,” International Journal of Fracture, Vol. 33 pp. R23-R26 (1987).
[5] Ballarini, R., Keer, L. M. and Shah, S, P., “An analytical model for the pull-out of rigid anchors,” International Journal of Fracture, Vol. 33, pp. 75-94 (1987).
[6] Chen, Y. H. and Hahn H. G., “The stress singularity coefficient at a finite rigid flat inclusion in orthotropic plane elastic body,” Engineering Fracture Mechanics Vol. 44, NO. 3, pp. 359-362 (1993).
[7] Chen Y. Z., “Intergral transform method for rigid-line problem in an infinite plate,” Engineering Fracture Mechanics, Vol. 47, No. 5, pp. 773-775 (1994).
[8] Chen Y. Z. and Cheung Y. K., “Stress singularity coefficients in an infinite plate containing rigid line and applied by concentrated forces,” Engineering Fracture Mechanics, Vol 26, No. 5, pp. 729-739 (1987).
[9] England A. H., “On stress singularities in linear elasticity,” International Journal of Engineering, Vol. 9, pp. 571-585 (1971).
[10] Erdogan, F. and Gupta, G. D., “On the numerical solution of singular integral equations,” Quarterly of Applied Mathematics, Vol. 30, pp. 525-534 (1972).
[11] Eshelby, J. D., “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proceedings of the Royal Society, A.,Vol. 241, pp. 376-396 (1957).
[12] Eshelby, J. D., “The elastic field outside an ellipsoidal inclusion,” Proceedings of the Royal Society, A., Vol. 252, pp. 561-569 (1959).
[13] Gerasoulis, A. and Srivaastav, R. P., “A method for the numerical solution of singular integral equations with a principal value integral,” International Journal of Engineering Science, Vol. 19, pp. 1293-1298 (1981).
[14] Gerasoulis, A., “The use of piecewise quadratic polynomials for the solution of singular integral equations of Cauchy type,” Computational Mathematics with Applications, Vol. 8, No. 1, pp. 15-22 (1982).
[15] Krishnan R. S., Radha V., and Gopal E. S. R., “Elastic constants of triclinic copper sulphate pentahydrate crystals,” Journal of Physics D: Applied Physics, Vol. 4, pp. 171-173 (1971).
[16] Lekhnitskii, S. G., “Theory of elasticity of anisotropic elastic body.” Holden-Day, San Francisco, California (1963).
[17] Li, Q. and Ting T.C.T., “Line inclusion in anisotropic elastic solids,” ASME Journal of Applied Mechanics, Vol. 56, pp. 556-563 (1989).
[18] Liou, J. Y. and Sung, J.C., “On the Barnett–Lothe tensors for anisotropic elastic materials,” European Journal of Mechanics A/Solids Vol. 27, pp. 1140–1160 (2008).
[19] Muskhelishvili, N. I., “Some Basic Problems in the Mathematical Theory of Elasticity,” Noordhoff (1953).
[20] Stroh, A. N., “Dislocations and cracks in anisotropic elasticity,” Philosophical Magazine, Vol. 3, pp. 625-646 (1958).
[21] Stroh, A. N., “Steady state problems in anisotropic elasticity,” Journal of Mathematical Physics, Vol. 41, pp. 77-103 (1962).
[22] Theocaris, A. and Ioakimidis, N. I., “Numerical integration methods for the solution of singular integral equations,” Quarterly of Applied Mathematics, Vol. 35, pp. 173-182 (1977).
[23] Ting, T. C. T., “Anisotropic elasticity: theory and application,” Oxford University press (1996).
[24] Wang, Z. Y., Zhang, H. T., and Chou, Y. T., “Characteristics of the elastic field of a rigid line inhomogeneity,” ASME Journal of Applied Mechanics, Vol. 52, pp. 818-822 (1985).
[25] Wang, Z. Y., Zhang, H. T., and Chou, Y. T., “Stress singularity at the tip of a rigid line inhomogeneity under antiplane shear loading," ASME Journal of Applied Mechanics, Vol. 53, pp. 459-462 (1986).
[26] 彭文彬,二維異向性裂紋交互作用之探討,碩士論文,國立成功大學土木工程研究所,2000。
[27] 洪崇倫,裂紋與線剛性異質物之互制分析,國立成功大學土木工程研究所,2008。