| 研究生: |
許閎魁 Syu, Hong-Kuei |
|---|---|
| 論文名稱: |
以彈性導電膠體為晶元鍵合媒介於可撓性金屬基板製備垂直結構發光二極體之研究 Use of Elastic Conductive Adhesive as the Bonding Agent for the Fabrication of Vertical Structure GaN-Based LEDs on Flexible Metal Substrate |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 彈性導電膠 、可撓性 |
| 外文關鍵詞: | Elastic conductive adhesive(ECA), Flexible stainless steel substrates |
| 相關次數: | 點閱:57 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨提出一具可撓式基板之氮化鎵系列垂直結構發光二極體(Flex-LED)之製造技術,以提升元件於各種軟式電子材料或非平面形狀面板之應用。
為提升元件之電流擴展能力、降低串聯阻值,我們先針對垂直結構發光二極體所需之最佳n-GaN厚度做一理論與實驗性研討。經實驗與理論證明,在載子濃度為1019 cm-3時,n-GaN之最佳化厚度為2.5 m。
一熱穩定的彈性導電膠體被作為晶圓鍵合的介質層,此一彈性膠體係由鍍鎳樹脂球與可撓式聚脂組成,於常溫至200oC的操作範圍內皆具有極佳之彈性緩衝特性。具可撓性之不鏽鋼基板,晶圓鍵合過程在180oC下以15秒完成。經區塊雷射剝離、表面粗化與電極成形,所提之具緩衝外在形變並維持穩定特性600×600μm2之Flex-LEDs是為完成。在注入電流為120 mA時,Flex-LED之順向壓降為3.3 V,光輸出(LOP)值為43 mW;與水平結構相較,順向壓降減少0.21 V,光輸出改善為80%,元件整體光電轉換效率達91%。在元件與外力相依性的量測上,我們定義一基板等效長度(Effective Length , Le)作為所施外力的指標。透過施加外力繞曲元件基板改變其等效長度至5 mm時,其主波長最大位移量為0.3 nm。同時,元件之光輸出與電流電壓特性維持相當的穩定無明顯變動。印證所提之元件結構對於外力的響應極小且具穩定之重現性。
This thesis is aimed to expand the application of GaN-based light-emitting diodes (LEDs) into Flextronics. Through the use of a thermal stable elastic conductive adhesive (ECA), a vertical structure GaN-based LED was fabricated on flexible stainless steel substrates (Flex-LEDs).
Before device fabrications, a theoretical and experimental study on optimal n-GaN thickness for the device fabrication was carried out for the pursuit of least parasitic resistance with good current spreading. Based on our experimental results, the optimal n-GaN thickness is 2.5 m. This thickness was used hereinafter.
The wafer bonding process was carried out at 180oC for 15s. After patterned laser lift-off, u-GaN removal, surface treatment, and electrode formation, Flex-LEDs with a size of 600×600 μm2 were fabricated. It was seen that the forward voltage (VF) and light output power (LOP) of Flex-LED at 120 mA are 3.3 V and 43 mW, respectively. As compared with regular LEDs, VF was 0.21 V less and LOP was 80% enhanced. This resulted in a 91% improvement of power conversion efficiency. The performance stability confronting external stress was further examined through substrate curving. It showed that Flex-LEDs have negligible changes dominant wavelength -current (WD-I) characteristics to bend from a plane length of 24 mm to an effective length of 5 mm. In the meantime, the light output intensity -current-voltage (L-I-V) remained stable without noticeable variations.
1. 鍾孟翰,“2007年全球平面顯示器景氣V型反轉 ”,光連雜誌74期,p.30,2008年3月。
2. 周一德,“鋒芒畢露的LED產業”, http://www.cnfi.org.tw/kmportal/ front/bin/ptdetail.phtml?Category=100289&Part=magazine9505-434-8,2006。
3. http://www.moneydj.com/z/glossary/glexp_2556.asp.htm
4. E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2003).
5. Jie Sun, H. Fatima, A. Koudymov, A. Chitnis, X. Hu, H.-M. Wang, J. Zhang, G. Simin, J. Yang, and M. Asif Khan, “Thermal Management of AlGaN-GaN Bonding With Epoxy Uunderfill”, IEEE Electron Device Lett., Vol. 24, No. 6, June 2003.
6. S. J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of patterned laser lift-off process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes”, Appl. Phys. Lett. vol.87, no.011111, 2005
7. 曹其瑋,“藍光LED金屬基板垂直架構趨勢確立高功率LED量產品發光效率可達80lm/W”,http://www.digitimes.com.tw/Ext/Ext.asp?Not esdocid=0000038726_B487778BHJ16KCG75RUYX&BigExtID=492,2007。
8. M. R. Krames, G. Christenson, D. Collins, L. W. Cook, and M.G. Craford, in SPIE Conf. Light Emitting Diodes: Research, Manufacturing, and Applications-Part IV, vol. 3938, pp. 2-12, 2000.
9. Electronic Materials, Education Network in Taiwan, Chinese Society for Materials Science (CSMS), 2001.
10. J. K. Sheu and Y. K. Su, “High-transparency Ni/Au ohmic contact to p-type GaN”, Appl. Phys. Lett., vol. 74, no. 16, pp.2340-2342, 1999.
11. A. Motayed, R. Bathe, M. C. Wood, et al., “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN”, J. Appl. Phys., vol. 93, no. 2, Jan 15, pp. 1087-1094, 2003.
12. C. T. Lee, H. W. Cao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN”, Appl. Phys. Lett., vol. 76, no. 17,Apr 24, pp. 2364-2366, 2000.
13. B. Jacobs, M. C. J. C. M. Kramer, E. J. Geluk, et al., “Optimisation of the Ti/Al/Ti/Au ohmic contact on AlGaN/GaN FET structures”, J. Cryst. Growth, no. 241,Jan 17, pp. 15-18, 2002.
14. 楊於錚,“準分子雷射剝離技術應用於具鍍鎳金屬基板高功率垂直結構GaN基LEDs之研究”,國立成功大學微電子工程研究所碩士論文,2005。
15. M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding methoded”, J. Appl. Phys., vol. 60, pp. 2987, 1986.
16. J. B. Lasky, “Wafer bonding for silicon-to-insulator technologies”, Appl. Phys. Lett., vol. 48, pp. 78, 1986.
17. R. Pelzer, H. Kerchberger, and P. Ketner, “Wafer-to-wafer bonding techniques: from MEMS packaging to IC integration application”, IEEE 2005 6th International Conference on Electronic Packaging Technology.
18. W. C. Pong, and Y. S. Wu, “Performance of InGaN-GaN LEDs fabricated using glue bonding on 50-mm Si substrate”, IEEE Photon. Technol. Lett., vol. 18, No. 4, pp.613-615, June 2003.
19. S. C. Hsu, B. J. Pong, W. H. Li, T. E. Beechem III, S. Graham, C. Y. Liu, “Stress relaxation in GaN by transfer bonding on Si substrate”, Appl. Phys. Lett., vol. 91, pp. 251114, 2007.
20. W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates”, Appl. Phys. Lett., no. 5, Feb 2, pp. 599-601, 1998.
21. 蕭棟升,”以雷射剝離技術進行具鍍鎳基板氮化鎵蕭基二極體之研製”,國立成功大學微電子工程研究所碩士論文,2005。
22. N. G. Basov, V. A. Danilychev, Y. M. Popov, and D. D. Khodkevich, “Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam”, J. Exp. Theor. Phys., Vol. 12, p.329, 1970.
23. S. Searles, G. Hart, “Stimulated emission at 281.8 nm from XeBr” Appl. Phys. Lett., Vol. 27, p.243, 1975.
24. 李永春,”準分子雷射細微加工機一般使用者訓練教材”,國立成功大學機械工程系,2004。
25. 李偉吉,”具IZO透明導電層之高功率大面積垂直結構GaN-基LEDs之研製”,國立成功大學微電子工程研究所碩士論文,2006。
26. M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical patterning of GaN films”, Appl. Phys. Lett., no. 12, pp. 1749-1751, Sep 16, 1996.
27. 朱振甫,利用雷射剝離技術製作氮化鎵發光元件之研究,國立交通大學光電工程研究所博士論文,2003。
28. S. J. Wang, “Builiding Better LEDs from the Bottom Up”, Photon. Spect., p.109, September, 2005.
29. G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980), p. 307.
30. Hader J, Koch S W, Moloney J V and O'Reilly E P, “InGaNAs and InGaPAs semiconductor quantum-well lasers”, Appl. Phys. Lett. , no. 77, pp.630, July 31, 2000.
31. I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys”, J. Appl. Phys., no. 89 , pp.5815., June 1, 2001.
32. S. J. Chuang, Physics of Optoelectronic Devices (Wiley Inter Science, 1995).
33. T. Afentakis, M. Hatalis, A. T. Voutsas, and J. Hartzell, “Design and fabrication of high-performance polycrystalline silicon thin-film transistor circuits on flexible steel foils”, IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 815–822, Apr. 2006.
34. X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates”, Appl. Phys. Lett., Vol. 78, no. 21, pp. 3337-3339, May 21