簡易檢索 / 詳目顯示

研究生: 林欣澤
Lin, Hsin-Tse
論文名稱: 地熱尾水回注引發斷層再活動之數值模擬研究
Numerical Simulation Study of Fault Reactivation by Geothermal Reinjection
指導教授: 謝秉志
Hsieh, Bieng-Zih
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 105
中文關鍵詞: 地熱尾水回注斷層再活動誘發地震活動岩石力學
外文關鍵詞: Geothermal reinjection, Induced seismicity, Fault reactivation, Geomechanics
相關次數: 點閱:57下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了減緩地球暖化及因應氣候變遷,再生能源的發展成為了各國所追求的目標。在各項再生能源中地熱發電具有穩定不受天候影響的優點,具有成為基載電力的潛力。在地熱發電當中,將發電後降溫的地熱水打回地下儲集層當中的行為稱為尾水回注,而尾水回注有助於儲集層壓力補給、防止地層下陷以及減少地表的熱和化學汙染等優點。除了各項優點外地熱尾水回注也有其需要考量的安全性問題,進行回注時需要考慮流體力學與岩石力學等反應機制的交互作用,若回注區域內存在既有斷層,將尾水注入地層中會有引起斷層再活動以及誘發地震之風險。
    本研究的主要目是利用數值模擬法評估既有斷層受地熱尾水回注而產生再活動之可能性,建立含有既有斷層之地熱儲集層數值模型,並透過耦合地下流體動和岩石力學計算,建立地熱尾水回注引起斷層再活動之模擬技術,並評估因斷層再活動而誘發地震的活動規模。
    本研究提出基於Mohr-Coulomb屈服面的廣義塑性模型結合節理岩石模型以及摩擦弱化行為,用以模擬斷層再活動時的斷層變形行為,此方法能用於模擬及觀測地熱尾水回注而產生的斷層再活動。此外,依據岩石力學的計算結果能夠量化因斷層再活動而誘發的地震活動之地震規模。
    研究結果顯示,在進行地熱生產時進行尾水回注可以有效提供壓力補助,並且經過適當規劃後注入井之冷峰亦不會到達生產井穿孔區間,因此並無降低發電效率之疑慮。在斷層內部進行地熱生產及尾水回注時可能會造成岩石變形,但由於斷層裂隙發達滲透率佳壓力不易累積,因此塑性應變範圍都非常微小並集中在注入井注水區間處,並不會影響到整體斷層面,因此所導致的地震規模非常微弱。

    In order to reduce global warming and climate change, renewable energy such as geothermal has become the primary goal of development in many countries. Reinjection plays an important role in geothermal development, reinjection may help with the recharge of the reservoir and may provide pressure support, reinjection also helps in reducing subsidence from large scale fluid withdrawal. But reinjection also has its disadvantages, such as induced seismicity and fault reactivation.
    The purpose of this study is to use numerical simulation method to evaluate the possibility of the pre-existing fault being reactivated by geothermal reinjection. Based on the thermal & advanced processes simulator CMG-STARS which is coupled reservoir simulation with geomechanical module, the approach of simulating the fault reactivation caused by geothermal reinjection is established in this study. The approach allows us to model the behavior of fault slip and to estimate the related induced seismicity.
    The result shows that reinjection can provide pressure support, and by proper planning, the thermal front won't reach the production area. Injections inside faults may cause rock deformation, if the fault has good fracture permeability, pressure will be hard to accumulate, so it is unlikely to cause fault reactivation by geothermal reinjection in a fault with good fracture permeability.

    中文摘要 i Extended Abstract ii 致謝 viii 目錄 ix 表目錄 xii 圖目錄 xiii 符號 xvii 第壹章、 緒論 1 1.1、 前言 1 1.2、 研究動機 8 1.3、 研究目的 8 第貳章、 文獻回顧 9 2.1、 地熱生產行為誘發斷層再活動案例及研究 9 2.2、 斷層構造及特性 12 2.2.1、 斷層構造 12 2.2.2、 斷層特性 15 2.3、 斷層再活動 19 2.4、 誘發地震 23 2.5、 小結 26 第參章、 研究方法 27 3.1、 岩石力學 27 3.1.1、 斷層的力學機制 27 3.1.2、 廣義塑性模型 29 3.1.3、 節理岩石模型 33 3.2、 地震矩與地震規模預測 36 3.3、 研究工具-STARS 37 3.3.1、 累積項 38 3.3.2、 流動項 38 3.3.3、 井操作項 39 3.3.4、 熱能操作項 40 3.3.5、 守恆方程式小結 40 3.4、 岩石力學計算及耦合 41 第肆章、 研究流程及數值模擬 43 4.1、 研究流程 43 4.2、 研究方法驗證 44 4.3、 基礎案例設計 53 4.3.1、 模型構造 53 4.3.2、 孔隙滲透率特性 55 4.3.3、 建立動態平衡模型 57 4.3.4、 現地應力及岩石力學參數 61 4.3.5、 注產井條件設置 65 第伍章、 結果與討論 67 5.1、 基礎模型結果 67 5.2、 情境案例分析 75 5.2.1、 單井生產 75 5.2.2、 單井注入 80 5.3、 小結 86 第陸章、 結論與建議 87 6.1、 結論 87 6.2、 建議 88 第柒章、 附錄 89 7.1.1、 應力 89 7.1.2、 應變 91 7.1.3、 彈性本構模型 93 7.1.4、 脆性岩石的變形 94 第捌章、 參考文獻 99

    Allis, R., Bromley, C., & Currie, S. (2009). Update on subsidence at the Wairakei–Tauhara geothermal system, New Zealand. Geothermics, 38(1), 169-180.
    Altmann, J. B., Müller, B., Müller, T., Heidbach, O., Tingay, M., & Weißhardt, A. (2014). Pore pressure stress coupling in 3D and consequences for reservoir stress states and fault reactivation. Geothermics, 52, 195-205.
    Andrews, D. (1976). Rupture velocity of plane strain shear cracks. Journal of Geophysical Research, 81(32), 5679-5687.
    Andrews, D. (2005). Rupture dynamics with energy loss outside the slip zone. Journal of Geophysical Research: Solid Earth, 110(B1).
    Bauer, J. F., Meier, S., & Philipp, S. L. (2015). Architecture, fracture system, mechanical properties and permeability structure of a fault zone in Lower Triassic sandstone, Upper Rhine Graben. Tectonophysics, 647, 132-145.
    Bubshait, A., Aminzadeh, F., & Jha, B. (2018). An integrated framework of stress inversion and coupled flow and geomechanical simulation for 4D stress mapping. Paper presented at the SPE Western Regional Meeting.
    Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025-1028.
    Cappa, F., & Rutqvist, J. (2011a). Impact of CO2 geological sequestration on the nucleation of earthquakes. Geophysical Research Letters, 38(17).
    Cappa, F., & Rutqvist, J. (2011b). Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. International Journal of Greenhouse Gas Control, 5(2), 336-346.
    Chang, K. W., & Segall, P. (2016). Injection‐induced seismicity on basement faults including poroelastic stressing. Journal of Geophysical Research: Solid Earth, 121(4), 2708-2726.
    Chen, R., Xue, X., Park, J., Yao, C., Chen, H., Datta-Gupta, A., . . . Dommisse, R. (2020). Coupled fluid flow and geomechanical modeling of seismicity in the Azle area (North Texas). SPE Reservoir Evaluation & Engineering, 23(03), 1006-1018.
    Chester, F. M., Evans, J. P., & Biegel, R. L. (1993). Internal structure and weakening mechanisms of the San Andreas fault. Journal of Geophysical Research: Solid Earth, 98(B1), 771-786.
    Chin, L., Raghavan, R., & Thomas, L. (2000). Fully coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability. SPE journal, 5(01), 32-45.
    CMG. (2021). User’s Guide: STARS Thermal & Advanced Precesses Simulator.
    Corey, A. T. (1954). The interrelation between gas and oil relative permeabilities. Producers monthly, 38-41.
    Couples, G. D., Lewis, H., Olden, P., Workman, G., & Higgs, N. (2007). Insights into the faulting process from numerical simulations of rock-layer bending. Geological Society, London, Special Publications, 289(1), 161-186.
    Crawford, B., Faulkner, D., & Rutter, E. (2008). Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz‐clay fault gouge. Journal of Geophysical Research: Solid Earth, 113(B3).
    Deichmann, N., & Giardini, D. (2009). Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismological Research Letters, 80(5), 784-798.
    Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161-2168.
    Dieterich, J. H., Richards‐Dinger, K. B., & Kroll, K. A. (2015). Modeling injection‐induced seismicity with the physics‐based earthquake simulator RSQSim. Seismological Research Letters, 86(4), 1102-1109.
    Fan, Z., Eichhubl, P., & Gale, J. F. (2016). Geomechanical analysis of fluid injection and seismic fault slip for the Mw4. 8 Timpson, Texas, earthquake sequence. Journal of Geophysical Research: Solid Earth, 121(4), 2798-2812.
    Farrell, N., Healy, D., & Taylor, C. (2014). Anisotropy of permeability in faulted porous sandstones. Journal of Structural Geology, 63, 50-67.
    Faulkner, D., Jackson, C., Lunn, R., Schlische, R., Shipton, Z., Wibberley, C., & Withjack, M. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11), 1557-1575.
    Faulkner, D., Lewis, A., & Rutter, E. (2003). On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367(3-4), 235-251.
    Flóvenz, Ó. G., Ágústsson, K., Guðnason, E. Á., & Kristjánsdóttir, S. (2015). Reinjection and induced seismicity in geothermal fields in Iceland. Paper presented at the Proceedings world geothermal congress.
    Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., & Davies, R. J. (2018). Global review of human-induced earthquakes. Earth-Science Reviews, 178, 438-514.
    Gerbault, M., Poliakov, A. N., & Daignieres, M. (1998). Prediction of faulting from the theories of elasticity and plasticity: what are the limits? Journal of Structural Geology, 20(2-3), 301-320.
    Guimaraes, L. d. N., Gomes, I. F., & Valadares, J. (2009). Influence of Mechanical Constitutive Model on the Coupled Hydro Geomechanical Analysis of Fault Reactivation. Paper presented at the SPE Reservoir Simulation Symposium.
    Hajiabdolmajid, V. (2017). Modeling brittle failure of rock. In Rock Mechanics and Engineering (pp. 593-621): CRC Press.
    HiQuake. (2022). The Human-Induced Earthquake Database. Retrieved from https://inducedearthquakes.org/
    Häring, M. O., Schanz, U., Ladner, F., & Dyer, B. C. (2008). Characterisation of the Basel 1 enhanced geothermal system. Geothermics, 37(5), 469-495.
    Horne, R. N. (1982). Effects of water injection into fractured geothermal reservoirs: a summary of experience worldwide. Retrieved from
    Huang, T., Chang, C., & Yang, Z. (1995). Elastic moduli for fractured rock mass. Rock Mechanics and Rock Engineering, 28(3), 135-144.
    Ida, Y. (1972). Cohesive force across the tip of a longitudinal‐shear crack and Griffith's specific surface energy. Journal of Geophysical Research, 77(20), 3796-3805.
    IEA. (2017). Energy Technology Perspectives 2017.
    IPCC. (2022). About the IPCC. Retrieved from https://www.ipcc.ch/about/
    Jaeger, J. C., Cook, N. G., & Zimmerman, R. (2009). Fundamentals of rock mechanics: John Wiley & Sons.
    Jeanne, P., Guglielmi, Y., Rutqvist, J., Nussbaum, C., & Birkholzer, J. (2017). Field characterization of elastic properties across a fault zone reactivated by fluid injection. Journal of Geophysical Research: Solid Earth, 122(8), 6583-6598.
    Jha, B., & Juanes, R. (2014). Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering. Water Resources Research, 50(5), 3776-3808.
    Juncu, D., Árnadóttir, T., Geirsson, H., Guðmundsson, G., Lund, B., Gunnarsson, G., . . . Michalczewska, K. (2020). Injection-induced surface deformation and seismicity at the Hellisheidi geothermal field, Iceland. Journal of Volcanology and Geothermal Research, 391, 106337.
    Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981-2987.
    Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the seismological society of America, 65(5), 1073-1095.
    Keilegavlen, E., Duboeuf, L., Dichiarante, A. M., Halldórsdóttir, S., Stefansson, I., Naumann, M., . . . Oye, V. (2021). Hydro-mechanical simulation and analysis of induced seismicity for a hydraulic stimulation test at the Reykjanes geothermal field, Iceland. Geothermics, 97, 102223.
    Kim, K.-H., Ree, J.-H., Kim, Y., Kim, S., Kang, S. Y., & Seo, W. (2018). Assessing whether the 2017 M w 5.4 Pohang earthquake in South Korea was an induced event. Science, 360(6392), 1007-1009.
    Kim, W. Y. (2013). Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. Journal of Geophysical Research: Solid Earth, 118(7), 3506-3518.
    Mandl, G. (1988). Mechanics of tectonic faulting: Elsevier Amsterdam.
    Mandl, G. (1999). Faulting in brittle rocks: an introduction to the mechanics of tectonic faults: Springer Science & Business Media.
    Mazzoldi, A., Rinaldi, A. P., Borgia, A., & Rutqvist, J. (2012). Induced seismicity within geological carbon sequestration projects: Maximum earthquake magnitude and leakage potential from undetected faults. International Journal of Greenhouse Gas Control, 10, 434-442.
    McClure, M. W., & Horne, R. N. (2011). Investigation of injection-induced seismicity using a coupled fluid flow and rate/state friction model. Geophysics, 76(6), WC181-WC198.
    McGarr, A. (2014). Maximum magnitude earthquakes induced by fluid injection. Journal of Geophysical Research: Solid Earth, 119(2), 1008-1019.
    Morris, A., Ferrill, D. A., & Henderson, D. B. (1996). Slip-tendency analysis and fault reactivation. Geology, 24(3), 275-278.
    Norbeck, J. H., & Horne, R. N. (2018). Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults. Tectonophysics, 733, 108-118.
    Ord, A., Hobbs, B., & Regenauer-Lieb, K. (2004). A smeared seismicity constitutive model. Earth, planets and space, 56(12), 1121-1133.
    Porter, R. T., Striolo, A., Mahgerefteh, H., & Faure Walker, J. (2019). Addressing the risks of induced seismicity in subsurface energy operations. Wiley Interdisciplinary Reviews: Energy and Environment, 8(2), e324.
    Rudnicki, J. W., & Rice, J. (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 23(6), 371-394.
    Rueda, J., Noreña, N., Oliveira, M., & Roehl, D. (2014). Numerical models for detection of fault reactivation in oil and gas fields. Paper presented at the 48th US Rock Mechanics/Geomechanics Symposium.
    Samuelson, J., Elsworth, D., & Marone, C. (2009). Shear‐induced dilatancy of fluid‐saturated faults: Experiment and theory. Journal of Geophysical Research: Solid Earth, 114(B12).
    Scibek, J., Gleeson, T., & McKenzie, J. (2016). The biases and trends in fault zone hydrogeology conceptual models: global compilation and categorical data analysis. Geofluids, 16(4), 782-798.
    ScrippsCO2Program. (2021). Merged Ice-Core Record. Retrieved from https://scrippsco2.ucsd.edu/data/atmospheric_co2/icecore_merged_products.html
    Segall, P., & Lu, S. (2015). Injection‐induced seismicity: Poroelastic and earthquake nucleation effects. Journal of Geophysical Research: Solid Earth, 120(7), 5082-5103.
    Segall, P., & Rice, J. R. (1995). Dilatancy, compaction, and slip instability of a fluid‐infiltrated fault. Journal of Geophysical Research: Solid Earth, 100(B11), 22155-22171.
    Shapiro, S. A., Dinske, C., & Kummerow, J. (2007). Probability of a given‐magnitude earthquake induced by a fluid injection. Geophysical Research Letters, 34(22).
    Shapiro, S. A., Rentsch, S., & Rothert, E. (2005). Fluid-induced seismicity: Theory, modeling, and applications. Journal of engineering mechanics, 131(9), 947-952.
    Sherburn, S., Bourguignon, S., Bannister, S., Sewell, S., Cumming, B., Bardsley, C., . . . Wallis, I. (2013). Microseismicity at Rotokawa geothermal field, 2008 to 2012. Paper presented at the Proceedings of the 35th New Zealand geothermal workshop. Rotorua, New Zealand.
    Sibson, R. (2003). Thickness of the seismic slip zone: Bulletin of the Seismological Society of America.
    Sibson, R. H. (1985). A note on fault reactivation. Journal of Structural Geology, 7(6), 751-754.
    Soltanzadeh, H., & Hawkes, C. D. (2008). Semi-analytical models for stress change and fault reactivation induced by reservoir production and injection. Journal of Petroleum Science and Engineering, 60(2), 71-85.
    Talwani, P., Chen, L., & Gahalaut, K. (2007). Seismogenic permeability, ks. Journal of Geophysical Research: Solid Earth, 112(B7).
    Tanikawa, W., Sakaguchi, M., Tadai, O., & Hirose, T. (2010). Influence of fault slip rate on shear‐induced permeability. Journal of Geophysical Research: Solid Earth, 115(B7).
    Terzaghi, K. (1925). Principles of soil mechanics. Engineering News-Record, 95(19-27), 19-32.
    Tran, D., Shrivastava, V. K., Nghiem, L. X., & Kohse, B. F. (2009). Geomechanical risk mitigation for CO2 sequestration in saline aquifers. Paper presented at the SPE Annual Technical Conference and Exhibition.
    UNFCCC. (2015). Adoption of the Paris Agreement : draft decision -/CP.21 : proposal / by the President. In.
    Vermeer, P. A., & De Borst, R. (1984). Non-associated plasticity for soils, concrete and rock. HERON, 29 (3), 1984.
    Wibberley, C. A., Yielding, G., & Di Toro, G. (2008). Recent advances in the understanding of fault zone internal structure: a review. Geological Society, London, Special Publications, 299(1), 5-33.
    Wiprut, D., & Zoback, M. D. (2000). Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea. Geology, 28(7), 595-598.
    Worum, G., van Wees, J. D., Bada, G., van Balen, R. T., Cloetingh, S., & Pagnier, H. (2004). Slip tendency analysis as a tool to constrain fault reactivation: A numerical approach applied to three‐dimensional fault models in the Roer Valley rift system (southeast Netherlands). Journal of Geophysical Research: Solid Earth, 109(B2).
    Wu, W., Reece, J. S., Gensterblum, Y., & Zoback, M. D. (2017). Permeability evolution of slowly slipping faults in shale reservoirs. Geophysical Research Letters, 44(22), 11,368-311,375.
    Yoo, H., Park, S., Xie, L., Kim, K.-I., Min, K.-B., Rutqvist, J., & Rinaldi, A. P. (2021). Hydro-mechanical modeling of the first and second hydraulic stimulations in a fractured geothermal reservoir in Pohang, South Korea. Geothermics, 89, 101982.
    Zhang, Y., Gartrell, A., Underschultz, J., & Dewhurst, D. (2009). Numerical modelling of strain localisation and fluid flow during extensional fault reactivation: Implications for hydrocarbon preservation. Journal of Structural Geology, 31(3), 315-327.
    Zhou, L., & Hou, M. (2011). Numerical simulation of micro-earthquakes induced by reservoir stimulation in the deep heat mining project Basel. Paper presented at the 12th ISRM Congress.
    Zoback, M. D. (2010). Reservoir geomechanics: Cambridge university press.
    吳政岳. (2018). 第一型天然氣水合物儲集層之模擬設計比對研究.
    陳一成, & 徐文科. (2013). 台電公司電力供應面再生能源之發展. 興大工程學刊, 24(2), 65-78.
    潘國樑. (2007). 工程地質通論. 台北市: 五南出版.
    鐘朝恭, & 呂守陞. (2012). 水力發電系統壽命分佈及故障診斷分析. 農業工程學報, 58(3), 1-15.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE