| 研究生: |
吳俞莘 Wu, Yu-Hsin |
|---|---|
| 論文名稱: |
在電子顯微鏡中架設數個掃描系統與其應用 Setting up various scanning systems in electron microscopies and their applications |
| 指導教授: |
張怡玲
Chang, I-Ling |
| 共同指導教授: |
張之威
Chang, Chih-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 外部掃描控制 、三探針量測 、電子束調制 、原子序電子顯微術 、氫化鈀 |
| 外文關鍵詞: | external scan control, three-probe measurement, electron-beam modulation, atomic-number electron microscopy (ZEM), palladium hydride (PdHx) |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對本實驗室開發之原子序電子顯微術(atomic-number electron microscopy, ZEM),在掃描式電子顯微鏡(Scanning Electron Microscope, SEM)與掃描穿透式電子顯微鏡(Scanning Transmission Electron Microscope, STEM)上設計並建置一套可跨平台運作的外部掃描與同步擷取系統。
系統以LabVIEW 程式為核心產生 X/Y 掃描,結合多通道類比輸入同步讀取訊號,以量測樣品的電子束吸收電流(EBAC)、熱吸收、熱調制影像,並提供特定區域(Region of Interest, ROI)掃描、可調電子束駐留時間,以及快速/高精度擷取路徑與其混合策略,以兼顧同步性、解析度與成本。
在此基礎上展示三項應用:(一)結合雙電流計的三探針量測,即使 SEM 影像未見異常,仍可由沿線電阻 R(x) 的局部非單調起伏辨識高電阻區,作為失效前兆之電性指標;於此實驗中本研究觀測到異常 R(x) 曲線,因而進一步導入調制量測分析。(二)在電子束調制實驗中,以鎖相放大器量測 2ω/3ω 諧波並配合模擬比對,結果發現「能量逸出」為熱調制主要機制;並進一步用鎖相放大器量測 1ω 訊號,配合 Wiedemann–Franz 定律分析,顯示不帶電的熱逸散是調制訊號的主要來源。為了釐清調制實驗結果,使用 COMSOL 模擬元件於熱輻射條件下的熱調制背景值,結果顯示實驗量測並非可由傳統熱輻射現象單獨解釋。(三)在 STEM 熱吸收掃描中結合 Protochips 系統,發現 ZEM 訊號與高角度環形暗場成像(High-Angle Annular Dark-Field, HAADF)互補,且解析度可達 1 奈米以下;並比較鈀(palladium)於吸氫前後在相同像素的熱吸收變化,觀測到去氫後鈀的熱吸收高於吸氫後鈀,重現實驗室前人結果。
綜上,本研究提出一套可複製、可擴充的跨平台外部掃描與同步擷取架構,並以電子束吸收電流(EBAC)、熱吸收、熱調制三個應用中,分別發現異常 R(x) 曲線、釐清電子束之電與熱調制機制、驗證 ZEM 與 HAADF 的互補關係,以及呈現鈀在吸氫前後的熱吸收差異,為 ZEM 日後的潛在應用鋪路。
This work implements a cross-platform external scanning and synchronous acquisition system for our atomic-number electron microscopy (ZEM) on both scanning electron microscopes (SEM) and scanning transmission electron microscopes (STEM). A LabVIEW controller generates X/Y beam scans while multichannel analog inputs acquire signals concurrently, enabling e-beam absorbed current (EBAC), thermal absorbance, and modulation imaging. The system supports region-of-interest scans, adjustable dwell time, and interchangeable fast (DAQ) and high-precision (meter/GPIB) acquisition paths.
Three applications demonstrate its capability. First, a dual-ammeter three-probe method maps the along-track resistance R(x); even when SEM images show no defects, local non-monotonic features reveal high-resistance segments, prompting modulation analysis. Second, in e-beam modulation, lock-in measurements of 2ω/3ω harmonics combined with modeling indicate that an effective thermal radiation is the dominant mechanism. Additional 1ω measurements, interpreted via the Wiedemann–Franz relation, show that non-electron heat loss dominates the modulation signal, while COMSOL estimates of traditional thermal radiative backgrounds are too small to account for the observations. Third, STEM thermal-absorbance imaging with a Protochips platform shows ZEM contrast complementary to high-angle annular dark-field (HAADF) with sub-nanometer resolution. Comparing palladium before and after hydrogenation reveals higher thermal absorbance after dehydrogenation, consistent with our prior observations.
Overall, the system provides a reproducible, extensible route to align structural, electrical, and thermal readouts, enabling early defect indication via R(x), clarifying e-beam modulation mechanisms, and establishing complementary ZEM–HAADF contrast for various materials.
[1] K. Arstila, T. Hantschel, A. Schulze, A. Vandooren, A. S. Verhulst, R. Rooyackers, P. Eyben, and W. Vandervorst, “Nanoprober-based EBIC measurements for nanowire transistor structures,” Microelectronic Engineering, vol. 105, pp. 99–102 (May 2013).
[2] P. Y. Huang, T. K. Hsiao, J. H. Yi, B. Y. Chen, Y. C. Chiu, I. L. Chang, T. K. Chung, M. C. Lu, and C. W. Chang, "A three-probe method for accurate nanoscale thermal transport measurements". Appl. Phys. Lett. 124, 182201 (2024).
[3] M. Li, H. Wu, E. M. Avery, Z. Qin, D. P. Goronzy, H. D. Nguyen, T. Liu, P. S. Weiss, and Y. Hu, “Electrically gated molecular thermal switch,” Science, 585–589 (2023).
[4] C. C. Lin, S. M. Wang, B. Y. Chen, C. H. Chi, I. L. Chang, and C. W. Chang, "Scanning electron thermal absorbance microscopy for light element detection and atomic number analysis". Nano Lett. 22, 2667 (2022).
[5] Y. C. Chiu, B. Y. Chen, C. C. Hsu, C. W. Tsai, S. M. Wang, I. L. Chang, and C. W. Chang, "Quantitatively profiling the evolution of hydrogen storage and defect healing processes in palladium at the nanoscale". ACS Nano 19, 10070 (2025).
[6] S. M. Wang, Y. C. Chiu, Y. H. Wu, B. Y. Chen, I. L. Chang, and C. W. Chang, "Standardization and quantification of backscattered electron imaging in scanning electron microscopy". Ultramicroscopy 262, 113982 (2024).