| 研究生: |
郭政昕 Kuo, Cheng-Hsi |
|---|---|
| 論文名稱: |
台灣地面高空短暫發光現象觀測網路記錄之紅色精靈與對應閃電之特性 The Characteristics of the Sprites and Their Parent Lightning Captured by Taiwan TLE Observation Network |
| 指導教授: |
許瑞榮
Hsu, Rue-Ron 陳炳志 Chen, Bing-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 高空短暫發光現象 、紅色精靈 、地面觀測 、極低頻磁場 |
| 外文關鍵詞: | Lightning, Transient Luminous Events (TLEs), sprite, optical TLE ground campaigns, Extremely Low Frequency (ELF) |
| 相關次數: | 點閱:101 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在早期的研究統計中,發現超過99.9%的紅色精靈是由正極性雲對地閃電所觸發,由於先前的研究主要為地面觀測,觀測範圍有所限制。因此在福衛二號衛星發射升空後,首次獲得了全球性的紅色精靈極性統計與分佈圖。並發現了20%以上的負極性紅色精靈事件,且負極性事件集中於緯度20度以內,這樣的結果與先前的結果有所差異,推測為之前的地面觀測站緯度偏高導致觀測到負極性事件較為稀少。成大目前運行中的地面光學觀測網路為目前極少數位於低緯度地區的觀測系統。因此本論文將使用台灣附近地面觀測資料,搭配安裝於鹿林天文台的極低頻磁場天線系統,對台灣附近的紅色精靈事件進行分析,希望能對於低緯度區域的紅色精靈極性有更進一步的瞭解。
在本研究中,分析了2015、2016年間共813個事件,總共確認了15個負極性紅色精靈,佔所有事件的比例為1.85%,雖然比例少於福衛二號資料所統計的結果,但仍舊與早期中高緯度區域地面觀測研究結果有顯著差異。而有約27%左右的負極性事件伴隨著精靈暈盤的發生,有8個事件是成群出現,且形狀為柱狀,而紅色精靈的電荷矩分析結果也顯示負極性事件之電荷矩平均值會低於正極性事件之電荷矩,與之前的研究結果吻合。這些結果提供了負極性紅色精靈放電過程的理論模型一些重要的線索與特徵。
Williams et al. (2007) summazied that more than 99.9% sprites are initiated by positive cloud-to-ground (+CG) and high charge moment change (CMC). After the launch of Formosat-2, the Imager of Sprite Upper Atmosphere Lightning (ISUAL) obtained the sprite globally for the first time and had a chance to investigate their polarities. The result surprisingly indicated that more than 20% of sprite events were triggered by negative cloud-to-ground lightning, totally different from the previous statistic results. Furthermore, most of negative sprites distribute over low latitude, and more than 80% negative sprites appear with halo signatures. The Taiwan optical TLE ground network, which consists of four stations is the only low-latitude observation facility in the world, and is capable to validate the above conclusions and explore the polarity of sprite around Taiwan with the assistance of the Lulin ELF obversations.
In this study, 813 sprite events captured by Taiwan optical TLE ground network from 2015 to 2016 are carefully analyzed. 15 negative sprites, approximately 1.85% of all events, were identified. Although the ratio of the negative sprite is less than the result obtained by ISUAL, this ratio is still significantly higher than the finding proposed by Williams et al. In the identified negative sprites, more than 27% events appeared with halo signatures, and 8 events appear in groups and the morphology of them is columnar. The derived CMCs of the sprites demonstrates that the CMC of negative sprites is averagely lower than the one of the positive sprites, and it is consistent with the finding by ISUAL observation. These results reveal some crucial characteristics and clues for the theoretical model of negative sprite.
Boeck, W.L., O.H. Vaughan, Jr., R.J. Blakeslee, B.Vonnegut, M. Brook and J. McKune (1995),Observations of lightning in the stratosphere. J.Geophys. Res., 100, 1465-1475.
Cummer, S. A. (2006), Measurements of lightning parameters from remote electromagnetic fields, NATO Advanced Study Institute on Sprites, Elves and Intende Lightning Discharges, M. Fullekrug et al., Springer, 191-210.
Chou, J. K., L. Y. Tsai, C. L. Kuo, Y. J. Lee, C. M. Chen, A. B. Chen, H. T. Su, R. R. Hsu, P. L. Chang, and L. C. Lee (2011), Optical emissions and behaviors of the blue starters, blue jets, and gigantic jets observed in the Taiwan transient luminous event ground campaign, J. Geophys. Res., 116, A07301, doi:10.1029/2010JA016162.
Franz, R. C., R. J. Nemzek, and J. R. Winckler (1990), Television Image of a large upward electrical discharge above a thunderstrom, Science, 249, 48-51.
Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons, (1996), Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23(16):2157-2160.
Hsu, R. R., H. T. Su, A. B. Chen, L. C. Lee, M. Asfur, C. Price, and Y. Yair (2003), Transient luminous events in the vicinity of Taiwan, J. Atmos. Sol. Terr. Phys., 65, 561–566, doi:10.1016/S1364-6826(02)00320-6.
Huang, S.-M., R.-R. Hsu, L.-J. Lee, H.-T. Su, C.-L. Kuo, C.-C. Wu, J.-K. Chou, S.-C. Chang, Y.-J. Wu, and A. B. Chen (2012), Optical and radio signatures of negative gigantic jets: Cases from Typhoon Lionrock (2010), J. Geophys. Res., 117, A08307, doi:10.1029/2012JA017600.
Krehbiel, P. R. (1986), The electrical structure of thunderstorms in the earth’s electrical environment, eds. E. P. Krider and P. G. Roble, pp. 90, Washington, DC, National Academy Press.
Lyons, A. and E. R. Williams (2003), Preliminary investigations of the phenomenology of cloud-to-stratosphere lightning discharges. Preprints, 17th Conf. on Atmospheric Electricity, St. Louis, MO, Amer. Meteor. Soc., 725–732.
Mackerras, D. (1985), Automatic short-range measurement of the cloud flash to ground flash ratio in thunderstorms, J. Geophys. Res., 90(D4), 6195–6201, doi:10.1029/JD090iD04p06195.
Orville, R. E., G. R. Huffines, W. R. Burrows, R. L. Holle, and K. L. Cummins (2002), The North American lightning network (NALDN)- first results: 1998-2000, Mon. Wea. Rev.,130, 2098-2109.
Pasko, V. P., U. S. Inan, and T. F. Bell (1996), Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields, Geophys. Res. Lett., 23, 649.
Pasko, V. P., Jianqi Qin, Sebastien Celestin (2012), Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions, Geophys. Res. Lett., 118, 1-16, doi:10.1029/2012JA017908.
Stellingwerf, R. F. (1978), Period determination using phase dispersion minimization, Astrophysical Journal, doi: 10.1086/156444.
Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner (1995), Preliminary results from the Sprites94 campaign: Red sprites, Geophys. Res. Lett., 22, 1205-1208.
Su, H. T., et al., (2003), Gigantic jets between a thundercloud and the ionosphere, Nature, 423(6943), 974–976, doi:10.1038/nature01759.
Su, H.-T., R.-R. Hsu, A. B.-C. Chen, Y.-J. Lee, and L.-C. Lee (2002), Observation of sprites over the Asian continent and over oceans around Taiwan, Geophys. Res. Lett., 29(4), 1044, doi:10.1029/2001GL013737.
Wescott, E. M., D. D. Sentman, D. Osborne, D. Hampton, and M. Heavner (1995), Preliminary results from the Sprites 94 aircraft campaign: Blue jets, Geophys. Res. Lett., 22, 1209-1212.
Winckler, J. R., W.A. Lyons, T.E. Nelson, and R.J. Nemzek (1996), New high-resolution ground-based studies of sprites, Journal of Geophysical Research., 101, 6997–7004
Williams, E. R. (1998), The positive charge reservoir for sprite-producing lightning, J. Atmos. Sol. Terr. Phys., 60, 689-692.
Wescott, E. M., H. C. Stenbaek-Nielsen, D. D. Sentman, M. J. Heavner, D. R. Moudry, and F. T. Sao-Sabbas (2001), Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors, J. Geophys. Res., 106, 10467-10477.
Williams, E. R., E. Downes, R. Boldi, W. Lyons, and S. Hechman (2007), Polarity asymmetry of sprite-producing lightning: a paradox, Radio Sci., 42, RS2S17, doi:10.1029/2006RS003488.
Wilson, C.T.R. (1956), A theory of thundercloud electricity. Proc., Royal Met. Soc., London, 236, 297-317.
Yukihiro, T. and Y. Kazuya (2009), SPRITE-SAT, 7th IAA Symposium on Small Satellites for Earth Observation, IAA-B7-0203.
陳翰,高空大氣閃電影像儀觀測之不同極性紅色精靈特性分布,國立成功大學太空與電漿科學研究所碩士論文(2018)。
黃鵬宇,2010年極低頻磁場波形量測分析應用於高空短暫發光現象之極性統計,國立成功大學太空與電漿科學研究所碩士論文(2012)。
黃崧銘,各類高空短暫發光現象的超低頻與極低頻至甚低頻電波特性,國立成功大學物理研究所博士論文 (2013)。
許長仁,BF-4極低頻天線校正及閃電電荷矩計算,國立成功大學物理研究所碩士論文 (2009)。
周容光,藍色及巨大噴流等高空短暫發光現象之探討,國立成功大學物理研究所碩士論文 (2008)。