簡易檢索 / 詳目顯示

研究生: 林鴻偉
Lin, Hong-wei
論文名稱: 以水熱法控制氧化鋅奈米線之成長
Controlling The Growth of ZnO Nanowires by Hydrothermal Method
指導教授: 張守進
Chang, Shoou-jinn
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 55
中文關鍵詞: 水熱法氧化鋅
外文關鍵詞: Hydrothermal, ZnO
相關次數: 點閱:85下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,奈米技術領域被廣為討論,而氧化鋅由於具有多樣的物理特性及可期的發展淺力,因而特別受到重視。氧化鋅奈米線的成長方式也隨之多樣化,例如:氣-液-固(VLS)、熱蒸鍍法、金屬-有機氣相磊晶法(MOVPE)、溶膠-凝膠法(sol-gel)及水熱法等。而水熱法早在1970年左右就被使用在晶體的成長上。本篇論文主要探討成長溫度、溶液濃度及成長時間對於以水熱法成長之氧化鋅奈米線的結構之影響,我們所使用的試劑是硝酸鋅以及六亞甲基四胺(HMT),而基板則是使用鍍有氧化鋅薄膜的玻璃基板,此層氧化鋅鍍膜主要是為了成長出均勻且方向性良好的奈米線。我們以穿透式電子顯微鏡(TEM)、掃瞄式電子顯微鏡(SEM)、X-ray繞射分析(XRD)及光激發光(PL)等儀器來觀測氧化鋅緩衝層和氧化鋅奈米線的表面型態及結構。從實驗中發現氧化鋅晶體的直徑和長度明顯受到兩者試劑的影響,而隨著成長時間增長,氧化鋅奈米線的長度也隨之增加,相反地,隨著成長溫度由90度降至60度,氧化鋅奈米線的成長速率則明顯降底。而在調低濃度的情況下,可以發現氧化鋅直徑會逐漸變細。所成長出的氧化鋅奈米線之能隙約為3.24電子伏特,而且具有[0001]的優選方向。

    Recently, nanotechnology has been widely discussed. ZnO has been intensely studied for its versatile physical properties and promising potential for electronics as well as optoelectronics applications. A variety of methods, like vapor-liquid-solid (VLS) process, thermal evaporation, metal-organic vapor phase epitaxy (MOVPE), sol-gel method, and hydrothermal method, etc., have been utilized to grow ZnO nanowires. Hydrothermal process has been carried out to produce crystalline structures since the 1970s. This study is to discuss how growth temperature, concentration of solutions, and growth times affect the crystal structures of ZnO nanowires grown by hydrothermal method. The reactants are ZnO(NO3)2.6H2O and hexamethyltetramine (HMT). Substrates are glasses with ZnO thin film coated. ZnO seed layer is needed to initialize the uniform growth of oriented nanowires. The morphology and crystalline structures of the buffer film and ZnO nanowires are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL). It could be found that the diameter and the length of ZnO nanowires is dominated by the concentration of the two reactants. And the length of ZnO nanowires becomes longer as the growth time increased. But on the contrary, the growth rate becomes slow as the growth temperature decreases from 90 to 60 ℃. By lowering the solution concentrations, the diameters of ZnO nanowires become thinner. The band-gap emission of as grown ZnO nanowires is about 3.24 eV and the ZnO nanowires has a preferred orientation along [0001] direction.

    Abstract (in Chinese) Ⅰ Abstract (in English) Ⅲ Contents Ⅴ Table Captions Ⅶ Figure Captions Ⅷ Chapter 1. Introduction 1 1-1 Nanotechnology and material………………………….…….…..…..1 1-2 Material growth…………………………….……….….……….…...4 1-2-1.Vapor-phase growth……………….…………..….………….4 1-2-2. Solution-phase growth……………….………..….…………5 Chapter 2. Experiment processes and analysis systems 12 2-1. Experiment processes…......……………..…………….……….….12 2-1-1. Substrate preparation……………………………..………...12 2-1-2. Hydrothermal deposition…………………….…..…………13 2-1-3. Characterization…...…………………………......................14 2-2. Analysis systems………………………………………..………….15 2-2-1. Field emission scanning electron microscopy ( FESEM ) ………………………………………………….15 2-2-2. X-ray diffraction analysis…………………………..…..…..17 2-2-3. Photoluminescence ( PL )……………………………..……19 2-2-4. High-resolution transmission electron microscopy ( HR-TEM ) ..………………………………………………20 Chapter 3. Results and discussion 25 3-1. ZnO buffer film……………………………………………………25 3-2. Controlled growth of ZnO nanowires………………………..........26 3-2-1. Solution concentration………………………………..........27 3-2-2. Growth temperature……………………………….……….29 3-2-3. Growth time…………………………………………..........29 3-3. Crystalline analysis of ZnO films and nanowires…………………30 Chapter 4. Conclusions and future works 53 4-1. Conclusions………………………………………………………..53 4-2. Future works……………………………………………………....55

    ch.1
    References
    [1] S. Ju, Y. Xuan, P. Ye, D. B. Janes, F. Ishikawa, C. Zhou, G. Lu, A. Facchetti, T. J. Marks, Nature Nanotechnology, Vol 2, 378-384, June, 2007.
    [2] Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289, 2001.
    [3] Jinhui Song, Xudong Wang, Jin Liu, Huibiao Liu, Yuliang Li, Zhong Lin Wang, Nano Lett., Vol. 8, No. 1, 2008.
    [4] Y. X. Wang, Q. F. Zhang, H. Sun, ACTA PHYSICA SINICA Vol.57, 1141-1144, 2008.
    [5] Min-Chang Jeong, Byeong-Yun Oh, Moon-Ho Ham, Jae-Min Myoung, Appl. Phys. Lett. Vol. 88, 202105, 2006.
    [6] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q.L. Hang, S.Q. Feng, Solid State Commun. 109, 677, 1999.
    [7] M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, X. F. Wang, Appl. Phys. Lett. 79, 839, 2001.
    [8] N. I. Kovtyukhova, B. R. Martin, J. K. N. Mbindyo, P. A. Smith, B. Razavi, T.S. Mayer, T. E. Mallouk, J. Phys. Chem. B105, 8762, 2001.
    [9] Z.W. Pan, Z.R. Dai, Z.L. Wang, Science, 291 1947, 2001.
    [10] Tomchenko A.A., Harmer G.P., Marquis B.T., Allen J.W., Sens. Actuators, Volume: B93, p. 126, 2003.
    [11] K.D. Mitzner, J. Sternhagen, D.W. Galipeau, Sens. Actuators, B93, 92, 2003.
    [12] J. Wollenstein, J.A. Plaza, C. Cane, Y. Min, H. Botttner, H.L. Tuller, Sens. Actuators B93, 350, 2003.
    [13] J. J. Wu and S. C. Liu, Adv. Mater., 14, 215, 2002.
    [14] J.G. Lu, P. Chang, and Z. Fan, Materials Science and Engineering R, 52, 49-91, 2006.
    [15] X. J. Huang, Y. K. Choi, Sensors and Actuators B122, 659-671, 2007.
    [16] X. D. Wang, C.J. Summers and Z.L. Wang, Nano Lett. 4, p. 423, 2004.
    [17] P. D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. J. Choi, Adv Funct Mater 12, p. 323, 2002.
    [18] W. I. Park and G. C. Yi, Adv. Mater. 16, p. 87, 2004.
    [19] H. J. Fan, F. Bertram, A. Dadgar, J. Christen, A. Krost and M. Zacharias, Nanotechnology 15, p. 1401, 2004.
    [20] Y. K. Tseng, C. T. Chia and C.Y. Tsay et al., Growth of epitaxial needle like ZnO nanowires on GaN films, J. Electrochem. Soc. 152, p. G95, 2005.
    [21] H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen and M. Meyyappan, Nano Lett. 4, p. 1247, 2004.
    [22] C.Y. Geng, Y. Jiang, Y. Yao, X.M. Meng, J.A. Zapien, C.S. Lee, Y. Lifshitz and S.T. Lee, Adv. Funct. Mater. 14, p. 589, 2004.
    [23] Y. Zhang, H.B. Jia, R.M. Wang, C.P. Chen, X.H. Luo and D.P. Yu, Appl. Phys. Lett. 83, p. 4631, 2003.
    [24] J. Park, H.H. Choi, K. Siebein and R.K. Singh, J. Cryst. Growth 258, p. 342, 2003.
    [25] S.Y. Li, P. Lin, C.Y. Lee, M.S. Ho and T.Y. Tseng, J. Nanosci. Nanotechnol. 4, p. 968, 2004.
    [26] Ye Sun, D. Jason Riley, Michael N. R. Ashfold, J. Phys. Chem. B, 110, 15186-15192, 2006.
    [27] Jie, J., et al., Appl. Phys. Lett. 86, 031909, 2005.
    [28] Lee, W., Jeong, M. C., Myoung, J. M. Nanotechnology, 15, 254, 2004.
    [29] X. Xing, K. Zheng, H. Xu, F. Fang, H. Shen, J. Zhang, J. Zhu, C. Ye, G. Cao, D.L. Sun and G. Chen, Micron 37, pp. 370–373, 2006.
    [30] X.D. Meng, B.X. Lin, B.J. Gu, J.J. Zhu and Z.X. Fu, Solid State Commun. 135, p. 411, 2005.
    [31] B. D. Yao, Y. F. Chan and N. Wang: Appl. Phys. Lett. 81, 757, 2002.
    [32] P.X. Gao, Z.L. Wang, Appl. Phys. Lett. 84, 2883, 2004.
    [33] X.D. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4, 423, 2004.
    [34] C.Y. Geng, Y. Jiang, Y. Yao, X.M. Meng, J.A. Zapien, C.S. Lee, Y. Lifshitz, S.T. Lee, Adv. Funct. Mater. 14, 589, 2004.
    [35] S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh, H.J. Lee, Chem. Mater. 15, 3294, 2003.
    [36] X.C. Sun, H.Z. Zhang, J. Xu, Q. Zhao, R.M. Wang, D.P. Yu, Solid State Commun. 129, 803, 2004.
    [37] P.X. Gao, Z.L. Wang, J. Phys. Chem. 106, 12653, 2002.
    [38] S. Singh, R.S. Srinivasa, S.S. Talwar, S.S. Major, Phys. Stat. Sol. (a) 204, 1658, 2007.
    [39] Y.W. Chen, Y.C. Liu, S.X. Lu, et al., J. Chem. Phys. 123, 134701, 2005.

    ch.2
    Reference
    [1] M.A. Verges, A. Mifsud, C.J. Serna, J. Chem. Soc. Faraday Trans., 86, 959-963, 1990.
    [2] S.H. Yi, S.K. Choi, J.M. Jang, J.A. Kim, W.G. Jung, Journal of Colloid and Interface Science 313, 705-710, 2007.
    [3] Y. Sun, D.J. Riley, M.N.R. Ashfold, J. Phys. Chem. B, 110, 15186-15192, 2006.
    [4] 成大微奈米中心儀器設備介紹,“http://140.116.176.21/www/technique/instrument/JSM6700.htm“
    [5] B.D. Cullity, “Elements of X-ray diffraction”, 2nd ed ( Addison Wesley, Canada, 1978 .)

    ch.3
    References
    [1]“水熱法製備ZnO二維周期有序孔結構薄膜“,張蔭民,藍鼎,王育人,王風平,化學通報,2006.
    [2] Zhang Yinmin, Lan Ding, Wang Yuren, Wang Fenping, Chemistry,70 (8):587-592, CSCD, 2007.
    [3] Svetozar Musić, Ankica Šarić, Stanko Popović, journal of alloys and compounds, Vol. 448, issue1-2, pp. 277-283, 2008.
    [4] Y. Sun, D. Jason Riley, M. N. R. Ashfold, J. Phys. Chem. B, Vol. 110, No. 31, 15186, 2006.
    [5] R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Y.K. Tseng, S.C. Kung, App. Phys. Lett. 87, 013110, 2005.
    [6] Y.L. Lin, S.S. Yang, S.Y. Tsai, H.C. Hsu, S.T. Wu, I.C. Chen, Crystal Growth & Design, Vol. 6, No. 8, 2006.
    [7] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C.D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L.Ding, W. K. Ge; J. Phys. Chem. B, 110,20865-20871, 2006.
    [8] L. Dai, X.L. Chen, W.J. Wang, T. Zhou, B.Q. Hu, J. Phys.: Condens. Matter. 15, 2221, 2003.

    [9] Hu Q. L., Ma X. L., Xie Z. Y., Wong N. B., Lee C. S. and Lee S. T., Chem. Phys. Lett. 344, 97, 2001.
    [10] Fu Z., Lin B., Liao G. and Wu Z., J., Cryst. Growth 93, 316, 1998.
    [11] Lili Wu, Youshi Wu, Wei LU, Physica E 28 82, 76–82, 2005.

    下載圖示 校內:2013-07-01公開
    校外:2018-07-01公開
    QR CODE