| 研究生: |
黃彥中 Huang, Yen-Chung |
|---|---|
| 論文名稱: |
利用混沌攪拌陣列來重新配置波長編碼以提升網路安全性 Security Enhancement on Reconfiguring Coded Wavelength with Chaotic-Triggered Array |
| 指導教授: |
黃振發
Huang, Jen-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 光分碼多重擷取 、陣列波導光柵 、空間光調製器 、混沌序列 、帳篷映射 |
| 外文關鍵詞: | Optical code-division multiple-access (OCDMA), arrayed-waveguide gratings (AWGs), spatial-light modulator, Tent map, Tent/M-sequence mapping scheme |
| 相關次數: | 點閱:175 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網路的快速發展,資料量的負荷日益增大,人們開始追求更靈活、高速的網路服務,但也成為竊聽者攻擊的主要目標。由於光纖通信具有廣大的頻寬,可以乘載更多的訊息,所以成為近年網路通訊的重要技術之一,也因此光纖通訊的安全性得到了更多學者的關注。
而OCDMA同時具有較靈活的架構且較高的隱密性,所以有許多作者提出基於分碼多工技術的研究來提升網路的安全性,但仍不足以保障系統安全,甚至降低傳輸的速度。因此本篇提出一個使用AWG (Arrayed-Waveguide Grating)編碼器、SLM (Spatial-Light Modulator)濾波器的OCDMA系統且採用混沌序列作為密鑰,透過映射演算法使混沌序列控制系統架構讓資料使用不同的載波傳送,來產生動態變異碼的效果;接收端則利用密鑰同樣地控制系統架構來還原變異碼。本研究的架構可以大幅提升原先系統的完整性,除此之外,使用這樣的架構竊聽者在不知道密鑰的情況下無法正確的破解資訊。
本篇論文將會分兩個部分分析,第一是使用NIST隨機度分析對視為密鑰的混沌序列進行隨機度分析,透過隨機的序列使竊聽者較不易猜中密鑰;第二是針對竊聽者的竊聽行為和系統的變碼速度進行安全度模擬分析。
With the rapid development of the Internet and increasing the amount of data load, people began to need a more flexible, high-speed Internet service. However, the Internet also becomes a major target for eavesdroppers. Since the optical fiber communication has a broad bandwidth, it can take the more load capacity, so network communication became an important technology in recent years. Therefore, the security of optical communication network has attracted more attention to the researchers.
Optical Code-Division Multiple-Access (OCDMA) network possesses flexible architecture and high privacy, and there were many research proposal based on such code-division multiplexing technologies to improve network security. Nevertheless, the research results are still not good enough to secure the system, or even reduce the speed of transmission. Therefore, this thesis proposed an OCDMA system with AWG (Arrayed-Waveguide Grating) encoder, SLM (Spatial-Light Modulator) filter and chaotic sequence. Through the mapping algorithm, chaotic sequence controls system to make the user transmit data with different carriers to achieve the dynamic address code; receiver uses the same algorithm to restore the data.
The analyses of this thesis include two parts. The first part is to use the NIST to analyze the chaotic sequence that is taken as a key. The eavesdroppers will have difficulty to guess the key because of its randomness. The second part is to simulate the network security of being eavesdropped.
[1] G. Kramer and G. Pesavento, "Ethernet passive optical network (EPON): Building a next-generation optical access network," IEEE Commun. Mag., vol. 40, pp. 66-73, Feb. 2002.
[2] W. Ford, Computer Communications Security, Ch. 2, Upper Saddle River, NJ: Prentice-Hall, 1994.
[3] P. Prucnal, M. Santoro, and T. Fan, “Spread spectrum fiber optic local area network using optical processing,” IEEE J. Lightwave Technol., vol. LT-4, no. 5, pp.547-554, May 1986.
[4] J. A. Salehi, “Emerging OCDMA communication systems and data networks,” J. Optical Network, vol. 6, pp. 1138-1178, Sept. 2007.
[5] J. P. Heritage and A. M. Weiner, “Advances in spectral optical code-division multiple-access communications,” IEEE J. Sel. Top. Quant. Electron., vol. 13, pp. 1351-1369, Sept.-Oct. 2007.
[6] D. Zaccarin, and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett., vol. 4, no. 4, pp. 479-482, Apr. 1993.
[7] J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824-833, Aug. 1989.
[8] Y. T. Chang, J. F. Huang, C. C. Wang, C. T. Yen, H. C. Cheng and L. W. Chou “Adaptive Modified Time-spreading and Wavelength-group-hopping Embedded M-sequence code for Improved Confidentiality over Synchronous Network,” Optical Engineering, vol. 50, no. 5, pp. 15-30, May 2011.
[9] M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” IEEE J. Lightwave Technol., vol. 13, no. 3, pp. 534-545, Mar. 1995.
[10] H. Takahashi, K. Oda, H. Toda, and Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” IEEE J. Lightwave Technol., vol. 13, no. 3, pp. 447-455, Mar. 1995.
[11] Z. Wang, J. Chang, and P. R. Prucnal, “Theoretical Analysis and Experimental Investigation on the Confidentiality of 2-D Incoherent Optical CDMA System,” IEEE J. Lightwave Technol., vol. 28, no. 12, pp. 1761-1769, June. 2010.
[12] Y. T. Chang, Y. C. Lin, "Dynamic Reconfigurable Encryption and Decryption with Chaos/M-Sequence Mapping Algorithm for Secure H.264/AVC Video Streaming over OCDMA Passive Optical Network," Multimedia tools and Application, vol.74, no. 15, pp.1931-1948, July 15, 2015.
[13] A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag., vol. 40, no. 9, pp. 83–87, Sept. 2002.
[14] W. Huang, M. H. M. Nizam, I. Andonovic and M. Tur, "Coherent optical CDMA (OCDMA) systems used for high-capacity optical fiber networks-system description, OTDMA comparison, and OCDMA/WDMA networking," IEEE J. Lightwave Technol., vol. 18, no. 6, pp. 765-778, June 2000.
[15] S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, "Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network," IEEE J. Lightwave Technol., vol. 22, pp. 2582-2591, Nov. 2004.
[16] M. Kavehrad, and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” IEEE J. Lightwave Technol., vol. 13, no. 3, pp. 534-545, Mar. 1995.
[17] T. H. Shake, “Security performance of optical CDMA against eavesdropping,” IEEE J. Lightwave Technol., vol. 23, pp. 655-670, Feb 2005.
[18] Y. T. Chang, C. C. Sue and J. F. Huang, "Robust Design for Reconfigurable Coder/Decoders to Protect Against Eavesdrop-ping in Spectral Amplitude Coding Optical CDMA Networks," IEEE J. Lightwave Technol., vol. 25, no. 8, pp. 1931-1948, Aug. 2007.
[19] Y. T. Chang, C. C. Sue and J. F. Huang, "Signatures reconfigurations over waveguide-gratings-based optical CDMA network codecs," the 9th International Conference on Photonics (ICP 2014), Kuala Lumpur, Malaysia, September 2-4, 2014.
[20] E. Marom and O. G. Ramer, “Encoding-decoding optical fiber network,” Electron. Lett., vol. 14, no. 3, pp. 48, 1978.
[21] J. A. Salehi, “Code division multiple-access techniques in optical fiber network-Part I: Fundamental principles,” IEEE Trans. on Commun., vol. 37, no. 8, pp. 824-833, August 1989.
[22] J. A. Salehi and C. A. Brackett, “Code division multiple-access Techniques in optical fiber networks-Part II: Systems performance analysis,” IEEE Trans. on Commun., vol. 37, no. 8, pp. 834-842, Aug. 1989.
[23] X. Zhang, I. Fan. An improved method for forming the chaotic sequence, J. Mathematics in Practice and Theory, 39(18): 36-42, 2009.
[24] M. Tricarico and F. Visentin, “Logistic Map: from Order to Chaos,” Applied Mathematical Sciences, vol. 8, no. 136, pp. 6819-6826, Sep. 2014.
[25] W. F. Hassan and M. A. Mahiub, “Some Dynamical Properties of the Family of Tent Maps,” Int. Journal of Math. Analysis, vol. 7, no. 29, pp. 1433-1449, 2013.
[26] Y. T. Chang, C. C. Sue and J. F. Huang, "Robust Design for Reconfigurable Coder/Decoders to Protect Against Eavesdropping in Spectral Amplitude Coding Optical CDMA Networks," IEEE J. Lightwave Technol., vol. 25, no. 8, pp. 1931-1948, Aug. 2007.
[27] H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an Arrayed-Waveguide Multiplexer on N×N Optical Interconnection,” IEEE J. Lightwave Technol., vol. 14, no. 6, pp. 1097-1105, June 1996.
[28] Y. T. Chang, Y. C. Lin, "Dynamic Reconfigurable Encryption and Decryption with Chaos/M-Sequence Mapping Algorithm for Secure H.264/AVC Video Streaming over OCDMA Passive Optical Network," Multimedia tools and Application, vol. 74, no. 15, pp. 1931-1948, July 2015.
[29] A. Rukhin1, J. Soto, and J. Nechvatal, “A Statistical Test Suite for Random and Pseudo-random Number Generators for Cryptographic Applications,” National Institute of Standards and Technology, Publication 800-22 Revision, Apr. 2010.
[30] Y. T. Chang, Y. C. Lin, "Dynamic scrambling scheme of arrayed-waveguide grating-based encryptors and decryptors for protection against eavesdropping," Computers & Electrical Engineering, vol. 49, Jan. 2016, pp. 184-197.
[31] Y. T. Chang, C. W. Tsailin and Y. C. Huang, "Dynamic reconfigurable AWG-based encryption and decryption with integrated chaos/M-sequence mapping algorithm for secure transmission," 2015 International Symposium on Next-Generation Electronics (ISNE), Taipei, pp. 1-3, 2015.