簡易檢索 / 詳目顯示

研究生: 董勝凱
Tung, Sheng-Kai
論文名稱: 價格相依下之航空最佳化營收
Airline Revenue Optimization under Price-dependent Demand
指導教授: 林正章
Lin, Cheng-Chang
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 124
中文關鍵詞: 收益管理期望邊際座位收益法數學規劃法座位配置訂價
外文關鍵詞: revenue management, EMSR, mathematical programming, seat allocation, pricing
相關次數: 點閱:163下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自美國在1978年解除對航空業管制後,航空公司便使用收益管理來獲得最大化收益。隨著航空業競爭日益激烈,收益管理被航空公司視為可以使企業成功的重要工具之一而逐漸獲得重視。
    由於受到飛機座位容量之限制,航空公司必須對各艙等進行座位配置及訂定票價來最大化收益。過去研究通常將座位配置問題與訂價問題視為兩個獨立問題並分開討論。然而在實務上,各艙等需求數量是依票價高低來決定。故本研究以反需求函數建立需求與票價間之關係。並以兩種不同方法:期望邊際座位配置法與數學規劃法建立在不同情境下,可以同時決定追求最大化收益下之座位配置與票價模式。期望邊際座位收益法主要考量座位之邊際收益將隨著座位配置量的增加而下降,因此在計算各艙等的座位配置量時,是以各艙等座位配置量的期望邊際座位收益值為基礎。而數學規劃法可以在已知限制(如機位容量限制與票價限制)下進行座位配置與訂價,並求得最佳預期收益。
    藉由模式測試結果可以發現透過數學規劃法所求得之最佳收益與期望邊際座位配置法相比,可以獲得較高之預期收益。另外,為了探討兩種方法在預期收益上之差異,本研究亦比較期望邊際座位配置法與數學規劃法所求之票價與座位配置量之差異。

    After the 1978 US Airline Deregulation Act removed many of regulations over airlines, revenue management (RM) systems were introduced to the airlines for objectively maximizing their revenue. With the increased competition in the airline industry, RM has been recognized as an important tool for the business success in such industry and received a lot of attention. Due to the limited aircraft seats, airlines must determine the amount of seats to be allocated to each of all fare class seats and the fares of those seats to charge to maximize revenues. Previous researches related to RM in airlines generally considered pricing and seat allocation as two problems and studied them independently. However, in practice, the demand of each class seat depends on its fare. Therefore, we assume inverse demand function, the fare for each fare class seat depends upon the number of seats demanded by itself. This study used the methods of expected marginal seat revenue (EMSR) and mathematical programming to formulate seat allocation and pricing models to simultaneously determine the optimal fare and seat allocation multiple fare class seats, in such that the total expected revenue is maximized. The computational results on the test examples presented in this study demonstrated that the use of mathematical programming method can achieve optimal revenue, with the results that are better than those achieved with EMSR method. We also compared the difference between the solutions solved by mathematical programming method and EMSR method

    目錄 第一章 緒論 1 1.1. 研究背景與動機 1 1.2. 研究問題、方法與目的 2 1.3. 研究流程 4 第二章 文獻回顧 6 2.1. 座位配置模式 6 2.1.1. 座位配置研究類型 8 2.1.2. 連續型需求變數之座位配置研究 10 2.1.3. 離散型需求變數之座位配置研究 15 2.2. 艙等價格座位需求與價格關係 18 2.3. 小結 20 第三章 模式建構 23 3.1. 票價反需求函數與模式假設 23 3.2. 單航段多艙等下之模式建構 26 3.2.1. 以數學規劃法在單航段多艙等下之模式建構 26 3.2.2. 以期望邊際座位收益法在單航段多艙等下之模式建構 29 3.2.3. 在單航段多艙等下兩種方法之比較 31 3.3. 多航段單艙等下之模式建構 35 3.3.1. 以數學規劃法在多航段單艙等下之模式建構 35 3.3.2. 以期望邊際座位收益法在多航段單艙等下之模式建構 39 3.3.3. 在多航段單艙等下兩種方法之比較 41 3.4. 多航段多艙等下之模式建構 46 3.4.1. 以數學規劃法在多航段多艙等下之模式建構 47 3.4.2. 以期望邊際座位收益法在多航段多艙等下之模式建構 56 3.4.3. 在多航段多艙等下兩種方法之比較 61 3.5. 小結 65 第四章 模式測試 67 4.1. 需求之機率分配 67 4.2. 反需求函數係數之設計 68 4.3. 單航段多艙等之座位配置 68 4.3.1. 數學規劃法之座位配置 69 4.3.2. 期望邊際座位收益法之座位配置 71 4.3.3. 單航段多艙等下之敏感度分析 73 4.4. 多航段單艙等之座位配置 78 4.4.1. 數學規劃法之座位配置 79 4.4.2. 期望邊際座位收益法之座位配置 82 4.4.3. 多航段單艙等下之敏感度分析 86 4.5. 多航段多艙等之座位配置 92 4.5.1. 數學規劃法之座位配置 92 4.5.2. 期望邊際座位收益法之座位配置 99 4.5.3. 多航段多艙等下之敏感度分析 108 4.6. 小結 118 第五章 研究結論與建議 119 參考文獻 121 一、中文部分 121 二、英文部分 121

    一、中文部分
    1. 張有恆,航空業經營與管理,華泰文化事業股份有限公司,民國九十七年。
    2. 鍾串寧,「最佳化收益之航空公司服務網路設計」,國立成功大學交通管理科學系碩士論文,民國九十八年。
    二、英文部分
    1. Barnhart, C., Belobaba, P., & Odoni, A. R. (2003). Applications of operations research in the air transport industry. Transportation Science, 37(4), 368-391.
    2. Belobaba, P. P. (1987). Air travel demand and airline seat inventory management. Cambridge, MA: Flight Transportation Laboratory, Massachusetts Institute of Technology.
    3. Belobaba, P. P. (1989). OR Practice—Application of a Probabilistic Decision Model to Airline Seat Inventory Control. Operations Research, 37(2), 183-197.
    4. Belobaba, P. P., & Weatherford, L. R. (1996). Comparing decision rules that incorporate customer diversion in perishable asset revenue management situations. Decision Sciences, 27(2), 343-363.
    5. Brumelle, S. L., & McGill, J. I. (1993). Airline seat allocation with multiple nested fare classes. Operations Research, 41(1), 127-137.
    6. Botimer, T. C., & Belobaba, P. P. (1999). Airline pricing and fare product differentiation: A new theoretical framework. Journal of the Operational Research Society, 50(11), 1085-1097.
    7. Chen, L., & Homem-de-Mello, T. (2010). Mathematical programming models for revenue management under customer choice. European Journal of Operational Research, 203(2), 294.305.
    8. Cizaire, C., & Belobaba, P. (2013). Joint optimization of airline pricing and fare class seat allocation. Journal of Revenue and Pricing Management, 12(1), 83-93.
    9. Curry, R. E. (1990). Optimal airline seat allocation with fare classes nested by origins and destinations. Transportation Science, 24(3), 193-204.
    10. de Boer, S. V., Freling, R., & Piersma, N. (2002). Mathematical programming for network revenue management revisited. European Journal of Operational Research, 137(1), 72-92.
    11. Hall, R. (1999). Handbook of transportation science. Springer.
    12. Huang, K., & Liang, Y. T. (2011). A dynamic programming algorithm based on expected revenue approximation for the network revenue management problem. Transportation Research Part E: Logistics and Transportation Review, 47(3), 333-341.
    13. Huang, K., & Lin, C. Y. (2014). A simulation analysis for the re-solving issue of the network revenue management problem. Journal of Air Transport Management.
    14. Hung, Y. F., & Chen, C. H. (2013). An effective dynamic decision policy for the revenue management of an airline flight. International Journal of Production Economics, 144(2), 440-450.
    15. Li, M. Z., & Oum, T. H. (2002). A note on the single leg, multifare seat allocation problem. Transportation Science, 36(3), 349-353.
    16. Littlewood, K. (2005). Special Issue Papers: Forecasting and control of passenger bookings. Journal of Revenue and Pricing Management, 4(2), 111-123.
    17. McGill, J. I., & Van Ryzin, G. J. (1999). Revenue management: Research overview and prospects. Transportation Science, 33(2), 233-256.
    18. Obeng, K., & Sakano, R. (2012). Airline fare and seat management strategies with demand dependency. Journal of Air Transport Management, 24, 42-48.
    19. Park, C., & Seo, J. (2011). Seat inventory control for sequential multiple flights with customer choice behavior. Computers & Industrial Engineering, 61(4), 1189-1199.
    20. Phillips, R. (2005). Pricing and revenue optimization. Stanford University Press.
    21. Robinson, L. W. (1995). Optimal and approximate control policies for airline booking with sequential nonmonotonic fare classes. Operations Research, 43(2), 252-263.
    22. Wilson, J. G., MacDonald, L., & Anderson, C. (2011). A comparison of different demand models for joint inventory-pricing decisions. Journal of Revenue & Pricing Management, 10(6), 528-544.
    23. Wollmer, R. D. (1992). An airline seat management model for a single leg route when lower fare classes book first. Operations Research, 40(1), 26-37.
    24. Wong, J. T., Koppelman, F. S., & Daskin, M. S. (1993). Flexible assignment approach to itinerary seat allocation. Transportation Research Part B: Methodological, 27(1), 33-48.
    25. Shaw, S. (2000). Airline Marketing and Management. Stephen Shaw. Ashgate Publishing.
    26. Talluri, K. T., & Van Ryzin, G. J. (2005). The theory and practice of revenue management (Vol. 68). Springer.
    27. Yoon, M. G., Lee, H. Y., & Song, Y. S. (2012). Linear approximation approach for a stochastic seat allocation problem with cancellation & refund policy in airlines. Journal of Air Transport Management, 23, 41-46.

    下載圖示 校內:2018-02-24公開
    校外:2018-02-24公開
    QR CODE