| 研究生: |
黃智文 Huang, Chih-Wen |
|---|---|
| 論文名稱: |
微波與毫米波通訊單晶積體電路之研究 Research on Monolithic Microwave Integrated-Circuits for Microwave and Millimeter-wave Communications |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 砷化鎵 、單晶積體電路 、微波 |
| 外文關鍵詞: | GaAs, MMIC, Microwave |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著元件技術的改進,人們對毫米波頻段的興趣也隨之增長。無線通訊系統朝向更高的頻率邁進。因此,積體電路的整合優勢變得越來越重要。本篇論文提出許多主動和被動的單晶毫米波積體電路(MMICs)新的設計電路。我們從毫米波的各式各樣應用概述開始,包括討論在一個系統中為什麼要使用單晶毫米波積體電路(MMICs)。在隨後的章節裡,這些新穎的MMIC晶片會有詳細的描述。
在三-五族半導體於國防和商業通訊的應用裡,GaAs PHEMT扮演非常重要的元件。在論文裡,我們研究以PHEMT元件設計的關鍵微波和毫米波MMICs,這包括高功率放大器、 溫度補償功率放大器、雙平衡式倍頻器、雙平衡式二極體混和器以及帶通濾波器等。
首先,基於Cripps理論,我們分析並且設計高功率MMIC 放大器。透過使用在論文裡描述的小信號模型法所得之小訊號等效電路,能非常準確地模擬S參數直到40 GHz。文中,我們完成一個Ka頻帶MMIC功率放大器的設計、製作和量測。此二級高功率放大器為一3.46mmx2.9mm厚2mil的GaAs小晶片。經量測,我們能取得至少10分貝的小信號增益,29.5 dBm P-1dB,31 dBm Psat 和優於12分貝的返回損失。
在本論文中,我們也探討溫度補償的方法。理解各式各樣的散射機制,可以幫助我們取得適於高速元件應用的溫度補償方法。文中,我們將製作以GaAs回饋電阻器為溫度補償的完全匹配四級Ku頻帶1 瓦特PHEMT MMIC功率放大器。我們能有效地降低隨溫度影響的增益變化,溫度在-40到80oC範圍內從原來的7分貝變化值降到使用溫度補償GaAs 回饋電阻器時的不到3分貝。
MMIC倍頻器和混頻器是製作在2 mil厚的GaAs基板,並使用0.25-µm商用半導體製程的InGaAs /AlGaAs/ GaAs PHEMT技術。使用耦合傳輸線的馬錢德巴倫(Marchand Balun)可以實現寬頻帶、性能佳、平面式的混頻器MMICs。二極體雙平衡式的星狀混頻器積體電路只有1.43x1.28 mm2的晶片尺寸。向上轉換損耗比為7分貝,同時可得到優於28分貝的LO對RF隔離度。而Ka頻帶的二極體雙平衡式倍頻器積體電路,在17.5-GHz輸入頻率、18 dBm輸入功率時,轉換損耗為12.6分貝。同時得到優於52分貝的隔離度。
最後,我們在GaAs 基板上設計一個新的平行耦合傳輸線濾波器並使用微機電技術來製作它。”文”濾波器可得到非常低的埠對埠插入損耗(3.5分貝,在33 GHz中心頻率),同時仍然提供相當高的隔離度,此和電腦模擬結果非常吻合。再者,這種結構可以和其他的平面電路整合,例如LNA和PA是在相同的基板上,因此消除掉不必要的介面。 更重要的是,由於極好的埠對埠距離(只有1.5毫米),”文”濾波器可有效地縮小整體系統的尺寸。
在這裡全部的研究題目,都包含理論的分析、電路特性的模擬、電磁效應的模擬和實驗結果的測量分析。
As device technology improves, interest in the millimeter-wave band grows. Wireless communication systems migrate to higher frequencies. In particular, the advantages of monolithic integration become increasingly important. This dissertation presents many new developments in Monolithic Millimeter-Wave Integrated Circuits (MMICs), both the active and passive circuit. It begins with an overview of the various applications of millimeter waves, including a discussion of system why many of them demand a MMIC implementation. In the subsequent chapters, new MMIC chips are described in detail.
GaAs PHEMT device is one of the most important devices of Ⅲ- Ⅴsemiconductors in military and commercial communication applications. Many key microwave and millimeter-wave MMICs with PHEMT device are investigated in this dissertation, which include the high power amplifier, temperature compensation power amplifier, double balanced frequency multiplier, double balanced diode mixer and band pass coupled filter.
At first, a high power MMIC amplifier, based on Cripps theory, was analyzed and designed. The determined small-signal equivalent circuit by using the small-signal modeling method described in this dissertation fits the S-parameters very well up to 40 GHz. A Ka-band MMIC power amplifier is designed, fabricated and measured. The two-stage HPAs were prepared on 2mil-GaAs substrates with a small chip size of 3.46 mm x 2.9 mm. It was found that we could achieve at least 10 dB small signal gain, 29.5 dBm P-1dB, 31 dBm Psat and better than 12 dB output return loss.
This dissertation describes the method of temperature compensation. Understanding the extent of contribution of various scattering mechanisms may help us achieve better temperature compensation suitable for high speed-device applications. A fully match four-stage Ku-band 1 watt PHEMT MMIC power amplifiers with temperature compensation GaAs feedback resistor was fabricated. It was found that we can significantly reduce the gain variation in the temperature range between -40 oC and 80oC from 7 dB to less than 3 dB by using the temperature compensation GaAs feedback resistor.
MMIC frequency multiplier and mixer are fabricated on 2-mil-thick GaAs substrates using 0.25-µm InGaAs/AlGaAs/GaAs PHEMT technology provided by commercially available foundry service. The coupled-line Marchand Baluns can be used to realize broadband, high-performance mixers for planar MMICs. The development of a Ka band monolithic diode double balanced star mixer has been demonstrated with a chip size of only 1.43×1.28 mm2. The typical up-conversion loss is 7 dB with an LO-to-RF isolation better than 28 dB. The development of a ka band monolithic diode double balanced multiplier has been demonstrated. At 17.5-GHz input frequency, the conversion losses are only 12.6 dB for an input power of 18 dBm. The isolation is better than –52 dB.
A new parallel-coupled line Ka-band filter was designed and fabricated on a GaAs substrate using micromachining techniques. The Wen filter showed very low port-to-port insertion loss (3.5 dB for the 33 GHz center frequency) while still providing high isolation and agrees very well with the simulated results. Further, this topology allows for straightforward integration of other planar elements, such as LNA’s and PA’s on the same substrate, thereby eliminating the need for transitions. The most important of all, the Wen filter shrinks the size of total system due to excellent port-to-port distance (1.5mm only).
In all these research topics, the theoretical analysis, circuit simulation, EM simulation, and experimental measurement are conducted to understand and verify the mechanism of the circuits.
Chapter 1
[1] C. Elachi, Introduction to the Physics and Techniques of Remote Sensing, New York, NY: John Wiley & Sons, 1987.
[2] J. C. Bean, “Materials and Technologies,” in High-Speed Semiconductor Devices, S. M. Sze, Editor, John Wiley & Sons, New York, 1990.
[3] I. Angelov, H. Zirath and N. Rorsman, “Validation of a nonlinear transistor model
by power spectrum characteristics of HEMT’s and MESFET’s,” IEEE Trans. On Microwave Theory and Tech., vol. 43, no. 5, pp. 1046-1052, May 1995
[4] T. H. Chen, P.D. Chow, K. L. Tan, J. A. Lester, G. Zell and M. Huang, “One watt Q-band class A pseudormorphic HEMT MMIC amplifier,” IEEE MTT-s International Microwave Symposium Digest, pp. 805-808, June 1994
[5] J. C. L. Chi, J. A. Lester, Y. Hwang, P. D. Chow and M. Y. Huang, “A 1-W high-efficiency Q-band MMIC power amplifier,” IEEE Microwave and Guided Wave Letter, vol. 5, pp. 21-23, Jan. 1995
[6] A. Bessemoulin, H. Massler, A. Hülsmann and M. Schlechtweg, “Ka-band high-power and driver MMIC amplifiers using GaAs PHEMTs and coplanar waveguide,” IEEE Microwave and Guided Wave Letter, vol. 12, pp. 534-536, Dec. 2000
[7] Youngwoo Kwon, Kyungjin Kim, Emilio A. Sovero and Don S. Deakin, “Watt-level Ka- and Q-band MMIC power amplifiers operating at low voltages,” IEEE Trans. on Microwave Theory and Tech., vol. 48, pp. 2226-2232, June 2000
Chapter 2
[1] G. Gonzales, Microwave Transistor Amplifiers Analysis and Design, 2nd ed., Prentice-Hall, N.J., 1997.
[2] G. Damrrine, A. Cappy, F. Heliodore and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. on Microwave Theory and Tech., vol. 36, no. 7, pp.1151-1159, July 1988
[3] F. H. Raab, “Class-F Power Amplifiers with Maximally Flat Waveforms”, IEEETrans. Microwave Theory Tech., vol. MTT-45, pp. 2007-2012, November 1997.
[4] H.L. Kraus, C.W. Bostian and F.H. Raab, “ Solid State Radio Engineering”, chapters 12-14, John Wiley & Sons inc., 1981.
[5] Y.C. Zhang and C.A.T. Salama, “Multi-Harmonic Tuning Behavior of MOSFET RF Power Amplifiers”, IEEE MTT-S Symposium Digest, 2001.
[6] Dissertation Dissertation by Grigori Doudorov, “Evaluation of Si-LDMOS transistor
for RF power amplifier in 2-6 GHz frequency range”, 2003.
[7] S. Cripps, “RF Power amplifiers for wireless applications”, Artech house, Inc., 2000.
[8] S.C. Cripps, “A Theory for the Prediction of GaAs FET Load-pull Power Contours”, IEEE MTT-S Symposium Digest, pp. 221-223, 1983.
[9] S.C. Cripps, “RF Power Amplifiers for Wireless Communications”, Artech House, 1999.
[10] R.G. Freitag, S.H. Lee, D.M. Krafcsik, D.E. Dawson and J.E. Degenford, “Stability and improved circuit modelling considerations for high power MMIC amplifiers”, IEEE MTT-S Symposium Digest, pp. 175-178, May 1988.
Chapter 3
[1] C. S. Wu, C.K. Yau, W. Kanber, H. Hu, M. Bar, S.X. Kurdoghlian, A. Bardai, Z. Bosch, D. Seashore, C. Gawronski, M., “Pseudomorphic HEMT manufacturing technology for multifunctional Ka-band MMIC applications,” IEEE Trans. Microwave Theory Technol., vol. 43, 1995, pp. 257-266.
[2] J. M. Schellenberg, “A high-voltage Ka-band power MMIC with 41% efficiency,” IEEE GaAs IC Symp. Dig., San Diego, CA, Nov. 1995, pp. 284–287.
[3] S. Fujimoto, T. Katoh, T. Ishida, T. Oku, Y. Sasaki, T. Ishikawa, Y. Mitsui, “Ka-band low noise MMIC amplifier using pseudomorphic HEMTs,” IEEE MTT-S Digest, 1997, pp. 17-20.
[4] D. L. Ingram, D.I. Stones, T.W. Huang, M. Nishimoto, H. Wang, M. Siddiqui, D. Tamura, J. Elliott, R. Lai, M. Miedenbender, H.C. Yen, and B. Allen, “A 6 Watt Ka-band MMIC power module using MMIC power amplifiers,” IEEE MTT-S Digest, 1997, pp. 1183-1186.
[5] J. J. Komiak, W. Kong, P. C. Chao, and K. Nichols, “3 Watt Ka-band MMIC HPA and driver amplifier implemented in a fully selective 0.15 µm power PHEMT process,” IEEE GaAs IC Digest, 1998, pp. 45-48.
[6] M. V. Aust, B. Allen, G. S. Dow, R. Kasody, G. Luong, M. Biedenbender, and K. Tan, “A Ka-band HHEMT MMIC 1 watt power amplifier,” IEEE Microwave and Millimeter-Wave Monolithic Symp. Dig., Atlanta, GA, June 1993, pp. 45–48.
[7] J. M. Schellenberg, “A high-voltage Ka-band power MMIC with 41% efficiency,” IEEE GaAs IC Symp. Dig., San Diego, CA, Nov. 1995, pp. 284–287.
[8] M. D. Biedenbender, J. L. Lee, K. L. Tan, P. H. Liu, A. Freudenthal, D. C. Streit, G. Luong, R. Lai, M. V. Aust, B. Allen, T. S. Lin, and H. C. Yen, “A power HEMT production process for high-efficiency Ka-band MMIC power amplifiers,” IEEE GaAs IC Symp. Dig., San Jose, CA, Oct. 1993, pp. 341–344.
[9] J. H. Lee, H. S. Yoon, B. S. Park, S. S. Choi, and K. E. Pyun, “Pseudomorphic AlGaAs/InGaAs/GaAs High Electron Mobility Transistors with Super Low Noise Performances of 0.41dB at 18Ghz,” ETRI Journal vol. 18, no. 3, 1996.
[10] ETRI GaAs MMIC Design Guide Version 3.1, Electronics and Telecommunications Research Institute1997.
[11] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Technol., vol. MTT- 36, pp. 1151-1159, July 1988.
[12] R. Anholt and S. Swirhun, "Equivalent-circuit parameter extraction for cold GaAs MESFET’s," IEEE Trans. Microwave Theory Technol., vol. MTT-39, pp. 1243-1247, July 1991.
[13] N. Rorsman, M. Garcia, C. Karlsson, and H. Zirath, "Accurate small-signal modeling of HFET’s for millimeter-wave applications," IEEE Trans. Microwave Theory Technol., vol. 44, pp. 432-437, Mar. 1996.
[14] R. Lai, M. Nishimoto, Y. Hwang, M. Biedenbender, B. Kasody, C. Geiger, Y. C. Chen, and G. Zell, “A high efficiency 0.15 m 2-mil thick InGaAs/AlGaAs/GaAs V-band power HEMT MMIC,” IEEE GaAs IC Symp. Dig., Orlando, FL, Nov. 1996, pp. 225–227.
[15] LineCalc User’s Guide, “HP-EEsof Microwave & RF Design Syndissertation”, February 1994.
[16] Zeland IE3D Release 4, 1998.
[17] J. J. Komiak, S.C. Wang, T.J. Rogers, “High efficiency 11 watt octave S/C-Band PHEMT MMIC power amplifier,” 1997 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1421-1424, 1997.
[18] J. J. Komiak, “Design and performance of an octave band 11watt power amplifier MMIC,” IEEE Trans. Microwave Theory and Tech., vol. MTT-38, no. 12, pp. 2001-2006, Dec. 1990.
[19] J.H. Lee et al., “Pseudomorphic AlGaAs/InGaAs/GaAs High Electron Mobility Transistors with Super Low Noise Performances of 0.41dB at 18Ghz,” ETRI Journal vol. 18, no. 3, 1996.
[20] ETRI GaAs MMIC Design Guide Version 3.1,Electronics and Telecommunications Research Institute1997.
Chapter 4
[1] A. Ishimaru, M. Maeda, T. Yoshida, J. Ozaki, and S. Kamihashi, "35 % PAE 6 W Ku-Band Power Amplifier Module,” 1999 IEEE MTT-S Int. Microwave Symp. Dig., pp. 955-958,1999.
[2] F. Ali, M. Salib, A. Gupta, and D. Dawson, "A 8-15 GHz, 1W HBT Power MMIC with 16 dB Gain and 48% PeakPower Added Efficiency,” 1993 IEEE GaAs IC Symp. Dig.,pp. 363-366, 1993.
[3] M. Salib, F. Ali, A. Gupta, and D. Dawson, "A 1-W, 8-14GHz HBT Amplifier with > 45% Peak Power Added Efficiency,” IEEE Microwave Guided Wave Lett., Vol. 3, No. 8, August 1993.
[4] J. L. B. Walker, editor. High-Power GaAs FET Amplifiers. Artech House, Norwood, MA, 1993.
[5] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Technol., vol. MTT- 36, pp. 1151-1159, July 1988.
[6] R. Anholt and S. Swirhun, "Equivalent-circuit parameter extraction for cold GaAs MESFET’s," IEEE Trans. Microwave Theory Technol., vol. MTT-39, pp. 1243-1247, July 1991.
[7] N. Rorsman, M. Garcia, C. Karlsson, and H. Zirath, "Accurate small-signal modeling of HFET’s for millimeter-wave applications," IEEE Trans. Microwave Theory Technol., vol. 44, pp. 432-437, Mar. 1996.
[8] S. M. Sze, Physics of Semiconductor Devices. 2nd ed. New York: Wiley, 1981.
[9] E. E. Mendez, P. J. Price, and M. Heiblum, “Temperature dependence of the electron mobility in GaAs-GaAlAs heterostructures,” Appl. Phys. Lett., Vol 45 (3) pp. 294-296. August 1, 1984
Chapter 5
[1] Keng Leong and Robert G. Meyer, “Monolithic RF active mixer design,” IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 46, no. 3, March 1999, pp.231-239.
[2] Inder Bahl and Prakash Bhartia, “Microwave Solid State Circuit Design”, Wiley-Interscience., 1988
[3] Behzad Ravazi, “RF Microelectrics”, Prentice Hall.
[4] Ravender Goyal, “High-Frequency Analog Integrated Circuit Design”, Wiley-Interscience., 1995
[5] Maas, S.A. “Microwave Mixers”, Artech house, ISBN 0-89006-605-1
[6] H. Wang et al., “Monolithic W-band VCOs using pseudomorphic AlGaAs/InGaAs/GaAs HEMT’s,” in 14th Ann. IEEE GaAs IC Symp. Dig., Miami, FL, Oct. 1992, pp. 47-50.
[7] Y. Kwon et al., “Larger signal analysis and experimental characteristics of monolithic InP-based W-band HEMT oscillators,” in 21th European Microwave Conf. Tech. Dig., Stuttgart, Germany, Sept. 1991.
[8] H. Wang et al. “Monolithic V-band frequency converter chip set development using 0.2 µm AlGaAs/InGaAs pseudomorphic HEMT technology,” IEEE Trans. Microwave Theory and Tech.,vol. 42, no. 1, Jan. 1994.
[9] S. W. Chen et al., “Rigorous design of a 94 GHz MMIC doubler,” in IEEE 1993 Microwave and Millimeter-wave Monolithic Circuits Symp. Dig., Atlata, GA, June 1993, pp. 89-92.
[10] Manley J. M., and Rowe H. E., “Some general properties of nonlinear elements – Part-I. General Energy Relations,” Proceedings of the IRE, Vol. 44, pp. 904-913, July 1956.
[11] Penfield P., and Rafuse R. P., “Varactor Applications,” Cambridge, Massachusetts: MIT Press, 1962.
Chapter 6
[1] J. Eisenberg, J. Panelli, and W. Ou, “A New Planar Double-Double Balanced MMIC Mixer Structure,” IEEE 1991 Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest, p. 69.
[2] D. Cahana, “A New, Single-Plane Double-Balanced Mixer,” Applied Microwaves, Aug./Sept. 1989, p. 78.
[3] N. Marchand, “Transmission-Line Conversion Transformers,” Electronics, Vol. 17, no. 12, 1944, p. 142.
[4] J. Cloete, “Exact Design of the Marchand Balun,” Microwave J., vol. 23, no. 5, p. 99 (May, 1980).
[5] S. A. Maas and K. W. Chang, “A Broadband, Planar, Doubly Balanced Monolithic Ka-Band Diode Mixer,” IEEE 1993 Microwave and Millimeter- Wave Monolithic Circuits Symposium Digest, p. 53.
[6] Sturdivant, R, “Balun Designs for Wireless, …Mixers, Amplifiers and Antennas”, Applied Microwave, Summer 1993, pp 34-44
[7] Cho, C and Gupta, K.C., “A New Design Procedure for Single-Layer and Two-Layer Three-Line Baluns”, IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 12, December 1998, pp 2514-2519
[8] Marchand, N. “Transmission-Line Conversion”, Electronics December 1944, pp 142-145
[9] Schellenberg, J. and Hien, D, “Low-Loss Monolithic Baluns for K/Ka-Band Applications”, IEEE, MTTS Digest, 1999
[10] Tutt, M.N., et al, “A Low Loss, 5.5GHz – 20GHz Monolithic Balun”, IEEE MMT-S Digest, June 1997, pp 933 - 936
[11] Ojha, S.P., Branner, G.R. and Kumar, B.P., “A Miniaturized Lumped-Distributed Balun for Modern Wireless Communication System”, IEEE MTT-S digest, 1997, pp 1347-1350
[12] S.A. Maas, “Microwave Mixers”, Second Edition, Artech House –Boston.London,1993.
[13] Zeland IE3D Release 4, 1998.
Chapter 7
[1] M. Makimoto, S. Yamashita, "Strip-line resonator filters having multi-coupled sections", IEEE MTTS International Microwave Symposium Digest, pp. 92-94, 1983
[2] S. B. Cohn, "Parallel coupled transmission-line resonator filter", IEE Trans. Microwave TheoryTech, vol. MTT-6, pp.223 - 231, Apr. 1958.
[3] George L. Matthaei, Leo Young, E. M. T. Johns, "Microwave Filters, Impedance Matching Networks, and Coupling Structures", Artech House, 472-478, 1980
[4] Zeland IE3D Release 4, 1998.
[5]R. B. Marks, “A Multiline Method of Network Analyser Calibra-tion,” IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 7, pp. 1205–1215, July 1991.
[6] R. B. Marks and D. F. Williams, Multical v1.00, NIST, Aug. 1995.
校內:2026-11-27公開