| 研究生: |
郁力潔 Yu, Li-Chieh |
|---|---|
| 論文名稱: |
以原子力顯微術研究變異鏈球菌生物膜胞外基質之動態分泌過程 In-situ, time-resolved study of extracellular polymeric substance secretion in Streptococcus mutans by atomic force microscopy |
| 指導教授: |
劉浩志
Liu, Hao-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 變異鏈球菌 、原子力顯微鏡 、生物膜 、微區機械性質 、胞外基質 |
| 外文關鍵詞: | Streptococcus mutan, Atomic force microscopy (AFM), PeakForce QNM, Biofilm, Extracellular polymeric substance |
| 相關次數: | 點閱:124 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
變異鏈球菌(Streptococcus mutans)為主要導致口腔疾病如齲齒、牙周病等主要病因,此菌體能轉換口腔中的醣類,創造酸性的口腔環境,破壞牙齒的結構,並分泌胞外基質,黏附於牙齒表面形成生物膜。胞外基質為常被形容為黏液,主要由水份及高分子物質所組成,功能是使菌體能夠黏附於表面,進而發展成具有完整立體構造的生物膜。
吾人利用濃度稀釋的方式製作了單層菌體試片,並藉由不同培養時間製作了不同成長階段:初附著、小菌落、成熟期的生物膜試片,透過原子力顯微術的峰力定量奈米機械模式(PeakForce quantitative nanomechanical property mapping, PeakForce QNM) 觀測大範圍10μm ×10μm生物膜的機械性質分佈,並且鎖定單一菌體約1μm ×1μm的範圍進行追蹤,利用黏滯性、能量耗散、彈性係數變化,分析胞外基質分泌的動態過程。另外,吾人也使用了共軛焦顯微鏡觀測胞外多醣體分佈,並與原子力顯微鏡觀測到的生物膜機械性質分佈交互對照。
實驗討論主要分為兩部份,在大範圍生物膜機械性的觀測中,吾人討論了三種成長階段的能量耗散與黏滯性變化,發現於小菌落階段的黏滯性及能量耗散數值最高,其次為成熟期,初附著則數值最低,並發現此量測結果與胞外多醣體的分泌量成正相關。於單一菌體胞外基質的追蹤觀測中,吾人主要觀測菌體周圍黏滯性、彈性係數的變化。在初附著階段中,胞外基質黏滯性及彈性係數變化速度與該位置和菌體的距離相關,推測為胞外基質分泌時,所需要的分子物質運送至該處由距離造成的時間長短所致。在成熟期的生物膜觀測中,菌體周圍胞外基質的黏滯性由內而外數值漸增,將相同黏滯性數值範圍所涵蓋的面積加以統計後,呈現了波動上升的曲線,反應了胞外基質生成及消耗的過程。另外,不論在初附著或是成熟期的生物膜,皆可觀測到於高度落差大的區域優先分泌黏滯性高且彈性係數大的胞外基質,推測為由高度落差產生的剪應力啟動了菌體分泌胞外基質的機制所致。
在本實驗中,吾人成功了利用微區機械性質變化,觀測胞外基質動態分泌過程,於未來的研究中,吾人希望能將此種分析方式與醫學上,與探討分子、基因、蛋白質對生物膜影響的儀器做結合,探討分子物質對於生物膜機械性質分佈的影響,並希望能找出影響生物膜結構的因子與控制方法的,進一步用於醫學治療。
Our main goal on this project is to observe the dynamic extracellular polymeric substance (EPS) secretion process during Streptococcus mutans’ biofilm formation. By Peakforce quantitative nanomechanical property mapping mode (Peakforce QNM) of Atomic force microscopy we obtained the mechanical property data which changed with EPS secretion. From our result, we found that adhesion force and dissipation energy distribution is related to the amount of expolysaccharides accumulation, adhesion force has the highest value at the place with larger height difference and each EPS layer with certain adhesion range are accompanied by EPS formation and consumption.
[1] G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters, vol. 56, p. 930, 1986.
[2] I. B. Beech, J. R. Smith, A. A. Steele, I. Penegar, and S. A. Campbell, "The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces," Colloids and surfaces B: Biointerfaces, vol. 23, pp. 231-247, 2002.
[3] C. S. Goldsbury, S. Scheuring, and L. Kreplak, "Introduction to atomic force microscopy (AFM) in biology," Current Protocols in Protein Science, pp. 17.7. 1-17.7. 19, 2009.
[4] D. J. Muller, "AFM: A Nanotool in Membrane Biology†," Biochemistry, vol. 47, pp. 7986-7998, 2008.
[5] J. Costerton, P. S. Stewart, and E. Greenberg, "Bacterial biofilms: a common cause of persistent infections," Science, vol. 284, pp. 1318-1322, 1999.
[6] X. Shi and X. Zhu, "Biofilm formation and food safety in food industries," Trends in Food Science & Technology, vol. 20, pp. 407-413, 2009.
[7] C. S. Laspidou and B. E. Rittmann, "A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass," Water Research, vol. 36, pp. 2711-2720, 2002.
[8] C. Solano, B. García, J. Valle, C. Berasain, J. M. Ghigo, C. Gamazo, et al., "Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose," Molecular microbiology, vol. 43, pp. 793-808, 2002.
[9] T. Eighmy, D. Maratea, and P. Bishop, "Electron microscopic examination of wastewater biofilm formation and structural components," Applied and environmental microbiology, vol. 45, pp. 1921-1931, 1983.
[10] D. W. Jackson, K. Suzuki, L. Oakford, J. W. Simecka, M. E. Hart, and T. Romeo, "Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli," Journal of bacteriology, vol. 184, pp. 290-301, 2002.
[11] M. Kopycinska-Müller, R. H. Geiss, and D. C. Hurley, "Contact mechanics and tip shape in AFM-based nanomechanical measurements," Ultramicroscopy, vol. 106, pp. 466-474, 2006.
[12] K. Johnson, K. Kendall, and A. Roberts, "Surface energy and the contact of elastic solids," Proceedings of the royal society of London. A. mathematical and physical sciences, vol. 324, pp. 301-313, 1971.
[13] B. Derjaguin, V. Muller, and Y. P. Toporov, "Effect of contact deformations on the adhesion of particles," Journal of Colloid and interface science, vol. 53, pp. 314-326, 1975.
[14] B. Pittenger, N. Erina, and C. Su, "Quantitative mechanical property mapping at the nanoscale with PeakForce QNM," Application Note Veeco Instruments Inc, 2010.
[15] J. K. Clarke, "On the bacterial factor in the aetiology of dental caries," British journal of experimental pathology, vol. 5, p. 141, 1924.
[16] F. Qi, J. Merritt, R. Lux, and W. Shi, "Inactivation of the ciaH Gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance," Infect Immun, vol. 72, pp. 4895-9, Aug 2004.
[17] I. Hamilton and N. Buckley, "Adaptation by Streptococcus mutans to acid tolerance," Oral microbiology and immunology, vol. 6, pp. 65-71, 1991.
[18] C. Hannig, A. Ruggeri, B. Al-Khayer, P. Schmitz, B. Spitzmüller, D. Deimling, et al., "Electron microscopic detection and activity of glucosyltransferase B, C, and D in the< i> in situ</i> formed pellicle," Archives of oral biology, vol. 53, pp. 1003-1010, 2008.
[19] H. Koo, J. Xiao, M. Klein, and J. Jeon, "Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms," Journal of bacteriology, vol. 192, pp. 3024-3032, 2010.
[20] D. Ajdić, W. M. McShan, R. E. McLaughlin, G. Savić, J. Chang, M. B. Carson, et al., "Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen," Proceedings of the National Academy of Sciences, vol. 99, pp. 14434-14439, 2002.
[21] L. Montanaro, D. Campoccia, S. Rizzi, M. E. Donati, L. Breschi, C. Prati, et al., "Evaluation of bacterial adhesion of< i> Streptococcus mutans</i> on dental restorative materials," Biomaterials, vol. 25, pp. 4457-4463, 2004.
[22] A. Ionescu, E. Wutscher, E. Brambilla, S. Schneider‐Feyrer, F. J. Giessibl, and S. Hahnel, "Influence of surface properties of resin‐based composites on in vitro Streptococcus mutans biofilm development," European Journal of Oral Sciences, vol. 120, pp. 458-465, 2012.
[23] G. Geesey, W. Richardson, H. Yeomans, R. Irvin, and J. Costerton, "Microscopic examination of natural sessile bacterial populations from an alpine stream," Canadian Journal of Microbiology, vol. 23, pp. 1733-1736, 1977.
[24] J. W. Costerton, K. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta, et al., "Bacterial biofilms in nature and disease," Annual Reviews in Microbiology, vol. 41, pp. 435-464, 1987.
[25] D. Monroe, "Looking for chinks in the armor of bacterial biofilms," PLoS biology, vol. 5, p. e307, 2007.
[26] G. O'Toole, H. B. Kaplan, and R. Kolter, "Biofilm formation as microbial development," Annual Reviews in Microbiology, vol. 54, pp. 49-79, 2000.
[27] M. B. Miller and B. L. Bassler, "Quorum sensing in bacteria," Annual Reviews in Microbiology, vol. 55, pp. 165-199, 2001.
[28] C. M. Waters and B. L. Bassler, "Quorum sensing: cell-to-cell communication in bacteria," Annu. Rev. Cell Dev. Biol., vol. 21, pp. 319-346, 2005.
[29] J. Wingender, T. R. Neu, and H.-C. Flemming, What are bacterial extracellular polymeric substances?: Springer, 1999.
[30] H. Liu and H. H. Fang, "Extraction of extracellular polymeric substances (EPS) of sludges," Journal of Biotechnology, vol. 95, pp. 249-256, 2002.
[31] D. Or, S. Phutane, and A. Dechesne, "Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils," Vadose Zone Journal, vol. 6, pp. 298-305, 2007.
[32] T. A. Camesano, M. J. Natan, and B. E. Logan, "Observation of changes in bacterial cell morphology using tapping mode atomic force microscopy," Langmuir, vol. 16, pp. 4563-4572, 2000.
[33] H. X. You, J. M. Lau, S. Zhang, and L. Yu, "Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology," Ultramicroscopy, vol. 82, pp. 297-305, 2000.
[34] H. G. Hansma, "Surface biology of DNA by atomic force microscopy," Annual review of physical chemistry, vol. 52, pp. 71-92, 2001.
[35] A. B. Mathur, G. A. Truskey, and W. Monty Reichert, "Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells," Biophysical Journal, vol. 78, pp. 1725-1735, 2000.
[36] I. Obataya, C. Nakamura, S. Han, N. Nakamura, and J. Miyake, "Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle," Nano letters, vol. 5, pp. 27-30, 2005.
[37] A. T. Henrici, "Studies of freshwater bacteria: I. A direct microscopic technique," Journal of bacteriology, vol. 25, p. 277, 1933.
[38] P. J. Bremer, G. G. Geese, and B. Drake, "Atomic force microscopy examination of the topography of a hydrated bacterial biofilm on a copper surface," Current Microbiology, vol. 24, pp. 223-230, 1992.
[39] A. Steele, D. Goddard, and I. Beech, "An atomic force microscopy study of the biodeterioration of stainless steel in the presence of bacterial biofilms," International biodeterioration & biodegradation, vol. 34, pp. 35-46, 1994.
[40] J. Friedrichs, A. Zieris, S. Prokoph, and C. Werner, "Quantifying the Effect of Covalently Immobilized Enzymes on Biofilm Formation by Atomic Force Microscopy‐Based Single‐Cell Force Spectroscopy," Macromolecular rapid communications, vol. 33, pp. 1453-1458, 2012.
[41] I. E. Ivanov, C. D. Boyd, P. D. Newell, M. E. Schwartz, L. Turnbull, M. S. Johnson, et al., "Atomic force and super-resolution microscopy support a role for LapA as a cell-surface biofilm adhesin of< i> Pseudomonas fluorescens</i>," Research in microbiology, vol. 163, pp. 685-691, 2012.
[42] R. E. Sladek, S. K. Filoche, C. H. Sissons, and E. Stoffels, "Treatment of Streptococcus mutans biofilms with a nonthermal atmospheric plasma," Lett Appl Microbiol, vol. 45, pp. 318-23, Sep 2007.
[43] C. Mayer, R. Moritz, C. Kirschner, W. Borchard, R. Maibaum, J. Wingender, et al., "The role of intermolecular interactions: studies on model systems for bacterial biofilms," International journal of biological macromolecules, vol. 26, pp. 3-16, 1999.
[44] V. Krstgens, H. Flemming, J. Wingender, and W. Borchard, "Influence of calcium ions on the mechanical properties of a model biofilmof mucoid Pseudomonas aeruginosa," Water Science & Technology, vol. 43, pp. 49-57, 2001.
[45] H.-C. Flemming and J. Wingender, "The biofilm matrix," Nature Reviews Microbiology, vol. 8, pp. 623-633, 2010.
[46] B. R. Boles, M. Thoendel, and P. K. Singh, "Self-generated diversity produces “insurance effects” in biofilm communities," Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 16630-16635, 2004.
[47] T. Shaw, M. Winston, C. Rupp, I. Klapper, and P. Stoodley, "Commonality of elastic relaxation times in biofilms," Physical review letters, vol. 93, p. 098102, 2004.
[48] C. J. Rupp, C. A. Fux, and P. Stoodley, "Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration," Applied and environmental microbiology, vol. 71, pp. 2175-2178, 2005.
[49] D. G. Allison, Community structure and co-operation in biofilms: Cambridge University Press, 2000.
[50] X. Zhang and P. L. Bishop, "Biodegradability of biofilm extracellular polymeric substances," Chemosphere, vol. 50, pp. 63-69, 2003.
[51] A. Boyd and A. á. Chakrabarty, "Role of alginate lyase in cell detachment of Pseudomonas aeruginosa," Applied and environmental microbiology, vol. 60, pp. 2355-2359, 1994