| 研究生: |
吳哲緯 Wu, Jhe-Wei |
|---|---|
| 論文名稱: |
希瓦氏菌鐵還原酶動力學和生物製造奈米金 Biofabrication of gold nanoparticles and the ferric reductase kinetic study in Shewanella |
| 指導教授: |
吳意珣
Ng, I-Son |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 希瓦氏菌 、鐵還原酶 、奈米金 、休眠細胞 |
| 外文關鍵詞: | Shewanella, Ferric reductase, gold nanoparticles, resting cell |
| 相關次數: | 點閱:129 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
希瓦氏菌是一種桿狀的兼性厭氧菌,對於鐵和錳具有極強的還原能力,廣泛應用於生物復育、微生物燃料電池及金屬污水整治中。本研究利用奧奈達希瓦氏菌 (MR-1) 與廈門希瓦氏菌 (SXM),藉由 Ferrozine 法來測試細胞濃度、培養時間和轉速對鐵還原酶活性的影響。結果顯示,鐵還原酶活性隨著細胞濃度上升而升高,但細胞活性在 24小時後或靜置培養條件下均大幅下降,故選擇培養條件在轉速 150 rpm、30oC 培養 12 h 下濃縮至細胞量 3.6 g/L,奧奈達希瓦氏菌 (MR-1) 與廈門希瓦氏菌 (SXM) 的最佳鐵還原酶分別為 79 U/g-DCW 和 110 U/g-DCW。採用 Michaelis–Menten 動力學模型, 計算得出 SXM 之 Vmax 和 km 分別是 114.94 U/g-DCW 與 2.2 mM ,MR-1 則是 86.21 U/g-DCW與 6.33 mM,顯示 SXM 有較大之反應速率和親和力。經由基因工程導入 Mtr 通道蛋白後發現 MtrC 顯著提昇了活性 (141.6 U/g-DCW),為原菌 MR-1 的 1.5 倍 (92.6 U/g-DCW)。
希瓦氏菌已被報導具有生成奈米金的能力,但最佳化與機制的探討仍不清楚。本研究探討 pH、細胞濃度、氯金酸濃度與光照效應等因素來對生成之奈米金的影響。找出最適化條件為 pH 5、2.4 g/L 細胞、300 ppm 氯金酸下光照 24 h,SXM 與 MR-1 所生成奈米金量分別為 108 ppm和 62 ppm, 更首次發現光照效應對奈米金生成的影響。由 SEM 與 Zeta potential的電位分析,我們假設希瓦氏菌奈米化金的反應機制為金離子先吸附在細胞表面上,藉由乳酸鈉提供電子經由希瓦氏菌的電子通道把電子傳遞到細胞表面,並將金酸還原成奈米金。文中最後完成了希瓦氏菌的休眠細胞應用測試,結果顯示放置 25 天之休眠細胞依然具備奈米金生成的能力。
In this study, we used S. oneidensis MR-1 (MR-1) and S. xiamenensis BC01 (SXM), to analyze ferric (Fe) reductase by using the Ferrozine assay to detect the Fe(II) concentration. Finally the optimal Fe reductase were determined with 3.6 g/L of biomass which cultured at 150 rpm, 30oC for 24 h. The best ferric reductase was 110 U/g-DCW and 79 U/g-DCW for SXM and MR-1, respectively. Under estimation of the kinetic parameters of Fe reductase were 114.9 U/g-DCWand 2.2 mM for SXM while 86.2 U/g-DCW and 6.33 mM for MR-1. It means that SXM has higher maximum velocity and affinity than MR-1. The genetic strains harboring of genes of mtrA, mtrC, and mtrCAB showed the highest enzymatic activity of 141.6 U/g-DCW obtained by the mtrC strain, which is 1.53 times of wild strain.
To discover the optimal condition for Au@NPs production from SXM and MR-1 was our purpose. Herein, the pH, biomass, concentration of gold ion, and photo effect are evaluated to optimize Au@NPs production by Shewanella. As a result, the highest biofabrication of Au@NPs was at pH 5 immersed in 300 ppm Au3+ and 50 mM sodium lactate at 2.4 g/L biomass after 24 h under light intensity of 100 µmole photons/m2s, which the yield of 108 ppm for SXM and 59 ppm for MR-1.The supposed mechanism of Au@NPs formation was Shewanella used sodium lactate as electron donor and followed by nucleation on cell membrane. Finally, the resting cells remained their ability for production of Au@NPs after 25 days.
[1] H. Liu, R. Ramnarayanan, and B. E. Logan, "Production of electricity during wastewater treatment using a single chamber microbial fuel cell," Environmental science & technology, vol. 38, pp. 2281-2285, 2004.
[2] H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim, "A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens," Enzyme and Microbial technology, vol. 30, pp. 145-152, 2002.
[3] G.-C. Gil, I.-S. Chang, B. H. Kim, M. Kim, J.-K. Jang, H. S. Park, et al., "Operational parameters affecting the performannce of a mediator-less microbial fuel cell," Biosensors and Bioelectronics, vol. 18, pp. 327-334, 2003.
[4] J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, C. Liu, M. C. Duff, D. B. Hunter, et al., "Influence of Mn oxides on the reduction of uranium (VI) by the metal-reducing bacterium Shewanella putrefaciens," Geochimica et Cosmochimica Acta, vol. 66, pp. 3247-3262, 2002.
[5] L. Sheng, J. Szymanowski, and J. B. Fein, "The effects of uranium speciation on the rate of U (VI) reduction by Shewanella oneidensis MR-1," Geochimica et Cosmochimica Acta, vol. 75, pp. 3558-3567, 2011.
[6] A. K. Suresh, D. A. Pelletier, W. Wang, M. L. Broich, J. W. Moon, B. Gu, et al., "Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis," Acta Biomaterialia, vol. 7, pp. 2148-52, 2011.
[7] C. K. Ng, K. Sivakumar, X. Liu, M. Madhaiyan, L. Ji, L. Yang, et al., "Influence of outer membrane c-type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis," Biotechnology and Bioengineering, vol. 110, pp. 1831-7, 2013.
[8] Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, et al., "Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae," Journal of biotechnology, vol. 128, pp. 648-653, 2007.
[9] H. H. Derby HA, "Bacteriology of butter. IV. Bacteriological studies on surface taint butter," Iowa Agric Exp Station Res Bull, pp. 389–416, 1931.
[10] H. Long and B. Hammer, "Distribution of Pseudomonas putrefaciens," Journal of Bacteriology, vol. 41, pp. 100-101, 1941.
[11] L. Baumann, P. Baumann, M. Mandel, and R. D. Allen, "Taxonomy of aerobic marine eubacteria," Journal of bacteriology, vol. 110, pp. 402-429, 1972.
[12] M. MacDonell and R. Colwell, "Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella," Systematic and applied microbiology, vol. 6, pp. 171-182, 1985.
[13] K. Kashefi, J. M. Tor, K. P. Nevin, and D. R. Lovley, "Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea," Applied and Environmental Microbiology, vol. 67, pp. 3275-9, 2001.
[14] C. R. Myers and K. H. Nealson, "Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor," Science, vol. 240, p. 1319, 1988.
[15] J. F. Heidelberg, I. T. Paulsen, K. E. Nelson, E. J. Gaidos, W. C. Nelson, T. D. Read, et al., "Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis," Nature biotechnology, vol. 20, pp. 1118-1123, 2002.
[16] Y. Hong, M. Xu, J. Guo, Z. Xu, X. Chen, and G. Sun, "Respiration and growth of Shewanella decolorationis S12 with an azo compound as the sole electron acceptor," Applied and environmental microbiology, vol. 73, pp. 64-72, 2007.
[17] H. M. Jensen, A. E. Albers, K. R. Malley, Y. Y. Londer, B. E. Cohen, B. A. Helms, et al., "Engineering of a synthetic electron conduit in living cells," Proceedings of the National Academy of Sciences, vol. 107, pp. 19213-8, 2010.
[18] Y. Li, I. S. Ng, X. Zhang, and N. Wang, "Draft Genome Sequence of the Dye-Decolorizing and Nanowire-Producing Bacterium Shewanella xiamenensis BC01," Genome Announcements, vol. 2, 2014.
[19] I. S. Ng, F. Xu, X. Zhang, and C. Ye, "Enzymatic exploration of catalase from a nanoparticle producing and biodecolorizing algae Shewanella xiamenensis BC01," Bioresource Technology, vol. 184, pp. 429-35, 2015.
[20] C. R. Myers and K. H. Nealson, "Respiration-linked proton translocation coupled to anaerobic reduction of manganese (IV) and iron (III) in Shewanella putrefaciens MR-1," Journal of Bacteriology, vol. 172, pp. 6232-6238, 1990.
[21] K. Venkateswaran, D. P. Moser, M. E. Dollhopf, D. P. Lies, D. A. Saffarini, B. J. MacGregor, et al., "Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov," International Journal of Systematic and Evolutionary Microbiology, vol. 49, pp. 705-724, 1999.
[22] K. E. Pitts, P. S. Dobbin, F. Reyes-Ramirez, A. J. Thomson, D. J. Richardson, and H. E. Seward, "Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates," Journal of Biological Chemistry, vol. 278, pp. 27758-65, 2003.
[23] D. P. Lies, M. E. Hernandez, A. Kappler, R. E. Mielke, J. A. Gralnick, and D. K. Newman, "Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms," Applied and Environmental Microbiology, vol. 71, pp. 4414-4426, 2005.
[24] M. J. Marshall, A. S. Beliaev, A. C. Dohnalkova, D. W. Kennedy, L. Shi, Z. Wang, et al., "c-Type cytochrome-dependent formation of U (IV) nanoparticles by Shewanella oneidensis," PLOS Biology, vol. 4, p. e268, 2006.
[25] E. Marsili, D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Gralnick, and D. R. Bond, "Shewanella secretes flavins that mediate extracellular electron transfer," Proceedings of the National Academy of Sciences, vol. 105, pp. 3968-3973, 2008.
[26] Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, et al., "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms," Proceedings of the National Academy of Sciences, vol. 103, pp. 11358-63, 2006.
[27] M. Y. El-Naggar, G. Wanger, K. M. Leung, T. D . Yuzvinsky, G. Southam, J. Yang, et al., "Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1," Proceedings of the National Academy of Sciences, vol. 107, pp. 18127-31, 2010.
[28] S. Pirbadian, S. E. Barchinger, K. M. Leung, H. S. Byun, Y. Jangir, R. A. Bouhenni, et al., "Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components," Proceedings of the National Academy of Sciences, vol. 111, pp. 12883-8, 2014.
[29] J. Huang, B. Sun, and X. Zhang, "Shewanella xiamenensis sp. nov., isolated from coastal sea sediment," International Journal of Systematic and Evolutionary Microbiology, vol. 60, pp. 1585-9, 2010.
[30] Z. Zong, "Nosocomial peripancreatic infection associated with Shewanella xiamenensis," Journal of medical microbiology, vol. 60, pp. 1387-1390, 2011.
[31] I. S. Ng, T. Chen, R. Lin, X. Zhang, C. Ni, and D. Sun, "Decolorization of textile azo dye and Congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01," Appl Microbiol Biotechnol, vol. 98, pp. 2297-308, 2014.
[32] T. Chen, Y. Zhou, I. S. Ng, C.-S. Yang, and H.-Y. Wang, "Formation and characterization of extracellular polymeric substance from Shewanella xiamenensis BC01 under calcium stimulation," Journal of the Taiwan Institute of Chemical Engineers, vol. 57, pp. 175-181, 2015.
[33] Y. Zhou and I.-S. Ng, "Explored a cryptic plasmid pSXM33 from Shewanella xiamenensis BC01 and construction as the shuttle vector," Biotechnology and Bioprocess Engineering, vol. 21, pp. 68-78, 2016.
[34] D. R. Lovley, "Electromicrobiology," Annual Review of Microbiology, vol. 66, pp. 391-409, 2012.
[35] H. von Canstein, J. Ogawa, S. Shimizu, and J. R. Lloyd, "Secretion of flavins by Shewanella species and their role in extracellular electron transfer," Applied and Environmental Microbiology, vol. 74, pp. 615-23, 2008.
[36] J. K. Fredrickson, M. F. Romine, A. S. Beliaev, J. M. Auchtung, M. E. Driscoll, T. S. Gardner, et al., "Towards environmental systems biology of Shewanella," Nature Reviews Microbiology, vol. 6, pp. 592-603, 2008.
[37] C. R. Myers and J. M. Myers, "Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron (III), fumarate, and nitrate by Shewanella putrefaciens MR-1," Journal of Bacteriology, vol. 179, pp. 1143-1152, 1997.
[38] B. Schuetz, M. Schicklberger, J. Kuermann, A. M. Spormann, and J. Gescher, "Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1," Applied and Environmental Microbiology, vol. 75, pp. 7789-96, 2009.
[39] D. Coursolle, D. B. Baron, D. R. Bond, and J. A. Gralnick, "The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis," Journal of Bacteriology, vol. 192, pp. 467-74, 2010.
[40] L. Shi, T. C. Squier, J. M. Zachara, and J. K. Fredrickson, "Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes," Molecular Microbiology, vol. 65, pp. 12-20, Jul 2007.
[41] A. S. Beliaev, D. A. Saffarini, J. L. McLaughlin, and D. Hunnicutt, "MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR‐1," Molecular microbiology, vol. 39, pp. 722-730, 2001.
[42] O. Bretschger, A. Obraztsova, C. A. Sturm, I. S. Chang, Y. A. Gorby, S. B. Reed, et al., "Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants," Applied and environmental microbiology, vol. 73, pp. 7003-7012, 2007.
[43] D. R. Lovley, "Dissimilatory Fe (III) and Mn (IV) reduction," Microbiological reviews, vol. 55, pp. 259-287, 1991.
[44] D. Lovley, J. R. Lloyd, and L. E. Macaskie, "Biotechnological application of metal reducing microorganisms," Journal of Applied Microbiology, vol. 53, 2003.
[45] C. R. Myers and J. M. Myers, "Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1," FEMS Microbiology Letters, vol. 108, pp. 15-22, 1993.
[46] J. R. Dodson, H. L. Parker, A. Muñoz García, A. Hicken, K. Asemave, T. J. Farmer, et al., "Bio-derived materials as a green route for precious & critical metal recovery and re-use," Green Chemistry, vol. 17, pp. 1951-1965, 2015.
[47] A. Ramesh, H. Hasegawa, W. Sugimoto, T. Maki, and K. Ueda, "Adsorption of gold (III), platinum (IV) and palladium (II) onto glycine modified crosslinked chitosan resin," Bioresource Technology, vol. 99, pp. 3801-3809, 2008.
[48] M. Spitzer and R. Bertazzoli, "Selective electrochemical recovery of gold and silver from cyanide aqueous effluents using titanium and vitreous carbon cathodes," Hydrometallurgy, vol. 74, pp. 233-242, 2004.
[49] Y. N. Mata, E. Torres, M. L. Blazquez, A. Ballester, F. Gonzalez, and J. A. Munoz, "Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus," Journal of Hazardous Materials, vol. 166, pp. 612-8, 2009.
[50] Y.-R. He, Y.-Y. Cheng, W.-K. Wang, and H.-Q. Yu, "A green approach to recover Au(III) in aqueous solution using biologically assembled rGO hydrogels," Chemical Engineering Journal, vol. 270, pp. 476-484, 2015.
[51] H. Bai, Z. Zhang, Y. Guo, and W. Jia, "Biological Synthesis of Size-Controlled Cadmium Sulfide Nanoparticles Using Immobilized Rhodobacter sphaeroides," Nanoscale Research Letters, vol. 4, pp. 717-23, 2009.
[52] L. Shi, K. M. Rosso, T. A. Clarke, D. J. Richardson, J. M. Zachara, and J. K. Fredrickson, "Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1," Frontiers in Microbiology, vol. 3, p. 50, 2012.
[53] K. H. Nealson, A. Belz, and B. McKee, "Breathing metals as a way of life: geobiology in action," Antonie Van Leeuwenhoek, vol. 81, pp. 215-222, 2002.
[54] S. A. Kumar, Y. A. Peter, and J. L. Nadeau, "Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin," Nanotechnology, vol. 19, p. 495101, 2008.
[55] R. Wu, L. Cui, L. Chen, C. Wang, C. Cao, G. Sheng, et al., "Effects of bio-Au nanoparticles on electrochemical activity of Shewanella oneidensis wild type and DeltaomcA/mtrC mutant," Scientific Reports, vol. 3, p. 3307, 2013.
[56] R. Kuhad, N. Sood, K. Tripathi, A. Singh, and O. Ward, "Developments in microbial methods for the treatment of dye effluents," Advances in applied microbiology, vol. 56, pp. 185-213, 2004.
[57] D. Georgiou and A. Aivasidis, "Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria," Journal of hazardous materials, vol. 135, pp. 372-377, 2006.
[58] A. B. dos Santos, F. J. Cervantes, and J. B. van Lier, "Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology," Bioresource technology, vol. 98, pp. 2369-2385, 2007.
[59] M. Xu, J. Guo, G. Zeng, X. Zhong, and G. Sun, "Decolorization of anthraquinone dye by Shewanella decolorationis S12," Applied microbiology and biotechnology, vol. 71, pp. 246-251, 2006.
[60] H. Liu and B. E. Logan, "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane," Environmental science & technology, vol. 38, pp. 4040-4046, 2004.
[61] H. P. Bennetto, J. Box, G. M. Delaney, J. Mason, S. D. Roller, J. Stirling, et al., "Redox-mediated electrochemistry of whole microorganisms: from fuel cells to biosensors," Biosensors, TURNER, APF, KARUBE, I., WILSON, GS (Hrsg.) Oxford University Press, Oxford, pp. 291-314, 1987.
[62] B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray, B. Little, et al., "High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10," Environmental science & technology, vol. 40, pp. 2629-2634, 2006.
[63] L. L. Stookey, "Ferrozine---a new spectrophotometric reagent for iron," Analytical chemistry, vol. 42, pp. 779-781, 1970.
[64] A. Levskaya, A. A. Chevalier, J. J. Tabor, Z. B. Simpson, L. A. Lavery, M. Levy, et al., "Synthetic biology: Engineering Escherichia coli to see light," Nature, vol. 438, pp. 441-442, 2005.
[65] J. B. McKinlay and J. G. Zeikus, "Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli," Applied and Environmental Microbiology, vol. 70, pp. 3467-74, 2004.
[66] M. E. Hernandez, A. Kappler, and D. K. Newman, "Phenazines and other redox-active antibiotics promote microbial mineral reduction," Applied and environmental microbiology, vol. 70, pp. 921-928, 2004.
[67] K. T. Finneran, C. V. Johnsen, and D. R. Lovley, "Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe (III)," International Journal of Systematic and Evolutionary Microbiology, vol. 53, pp. 669-673, 2003.
[68] N. Zhu, "Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation," Environmental Science and Pollution Research, " Environmental Science and Pollution Research, vol. 23, pp. 7627-7638, 2016
[69] A. Binupriya, M. Sathishkumar, K. Vijayaraghavan, and S.-I. Yun, "Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis," Journal of hazardous materials, vol. 177, pp. 539-545, 2010.
[70] M. Sathishkumar, A. Mahadevan, K. Vijayaraghavan, S. Pavagadhi, and R. Balasubramanian, "Green recovery of gold through biosorption, biocrystallization, and pyro-crystallization," Industrial & Engineering Chemistry Research, vol. 49, pp. 7129-7135, 2010.