| 研究生: |
盧紀勳 Lu, Chi-Hsun |
|---|---|
| 論文名稱: |
以二維理論分析波浪中穿浪型雙體船運動之時程模擬 The time domain motion analysis of the wave piercing catamaran ship in waves by two-dimensional theory |
| 指導教授: |
方銘川
Fang, Ming-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 二維脈動型源點分佈法 、穿浪型雙體船 、流體動力係數 、抗縱搖運動 |
| 外文關鍵詞: | Two-dimensional pulsating source distribution method, Wave-piercing catamaran, Hydrodynamic coefficient, Anti-pitch motion |
| 相關次數: | 點閱:183 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是利用二維源點分佈法於時程領域中,來模擬穿浪型雙體船航行於實際海域中之船體運動。穿浪型雙體船是於一般雙體船之中間增加一中央船體,其主要的設計基本概念為:當船體在波浪中大運動之狀況下,讓中央船體可適時提供一恢復力,以期達到降低雙體船之縱搖運動之反應。但由於遭遇海況與船體反應複雜,此中央船體是否有實際的抗縱搖作用有待進一步的分析探討。
本研究為了使模擬結果能快速達成,使用相當成熟之二維脈動型源點分佈法加以改良,使電腦程式於頻率領域下,在該船具有不同船體數時,如雙體或三體船體,都可快速且方便求解不同吃水深度之各項流體動力係數,再將求得之各項流體動力係數分別整合成一隨吃水變化之資料庫函數,其中激盪力之流體動力則依不同之波向進一步處理。數值解是利用四階Runge-Kutta的方法,模擬出該船於不同之海況下之時程領域五度運動;並將該船之中央船體移除,比較該船有無中央船體之運動,以探討中央船體之實際作用。本研究所建立的時程領域數值模擬技術將有助於造船設計者對穿浪型雙體船之分析作更進一步的了解。
The present study mainly applies the two dimensional source distribution method to simulate the ship motion of a wave-piercing catamaran ship traveling in the seaway by time domain technique. The basic design concept of the wave-piercing catamaran ship is to install a centre bow hull in the middle part, which is expected to depress the pitch motion in waves by supplying an additional restoring force. However, due to the complexity of the seaway and ship response, the anti-pitch function of the central bow is doubtful and needs further study.
In order to obtain the simulation results rapidly and practically, the present study planned to refine the well-developed two-dimensional pulsating source distribution method to create a computer program suitable for different multi-hull type ship, for example the catamaran ship or the trimaran ship. The computer program can solve the hydrodynamic coefficients with respect to different draft for different multi-hull shape and the related data base of the hydrodynamic coefficients need to be firstly established.
The motion simulations with and without central bow are made for comparisons to investigate the anti-pitch function with respect to different sea states.
參考文獻
1. Baar, J.M. and Price, W.G., “Evaluation of the Wavelike Disturbance in the Kelvin Wave Source Potential” , Journal of Ship Research, 32, No.1, pp. 45-53, March 1998.
2. Beck, R.F., “Time-domain computations for floating bodies” , Applied Ocean Research, 16 pp. 267-282, Elsevier Science Limited, 1994.
3. Bingham, H.B., “Simulating Ship Motions in the Time Domain” , Massachusetts Institute of Technology, 1994.
4. Fang, C.C. and Chan, H.S., “Investigation of Seakeeping Characteristics of High-Speed Catamarans in Waves” , Journal of Marine Science and Technology,12, No.1, pp. 7-15, 2004.
5. Fang, C.C. and Chan, H.S., “An investigation on the vertical motion sickness characteristics of a High-Speed Catamaran in ferry” ,Ocean Engineering 34 pp. 1909-1917, 2007.
6. Fang, M.C. , Lee, M.L. and Lee, C.K., “Time Simulating of Water Shipping for a Ship Advancing in Large Longitudinal Waves” , Journal of Ship Research, 37, No.2, pp. 126-137, 1993.
7. Gadd, G.E., “A Method of Computing the Flow and Surface Wave Pattern Around Full Form” The Royal Institution of Naval Architects, pp. 207-219, 1975.
8. Hess, J.L. and Smith, A.M.O., “Calculation of Nonlifting Potential Flow About Arbritrary Three-Dimensional Bodies” , Journal of Ship Research, 8, No.2, pp. 22-44, 1964.
9. Ikeda Yoshiho and Momoki Tsutomu, “An Experimental Study on Seakeeping Characteristics of a Fast Wave-Piercing Catamaran in Real Seas” , Journal of the Japan Society of Naval Architects and Ocean Engineers, 8, pp. 107-114, 2008.
10. Ikeda Yoshiho and Nihei Yasunori, “An Experimental Study on Seakeeping Characteristics of a Fast Wave-Piercing Catamaran in Heavy Waves” , Journal of the Japan Society of Naval Architects and Ocean Engineers, 6, pp. 331-337, 2007.
11. Inglis, R.B. and Price, W.G., “ A three dimensional Ship Motion Theory: Calculation of Wave Loading and Responses with Forward Speed” , Transcations of Royal Institution of Naval Architects, 124, pp. 183-192, 1981.
12. Inglis, R.B. and Price, W.G., “three dimensional Ship Motion Theory: Comparison between Theortical Predictions and Experimental Data of the Hydrodynamic Coefficients with Forward Speed” , Transcations of Royal Institution of Naval Architects, 124, pp. 141-157, 1981.
13. Kaplan, P. and Raff, A.I., “Evaluation and Verification of Computer Calculation of Wave-induced Ship Structural Load” , Ship Structures Committee Report No.299, 1972.
14. Kim, C.H. ,Chou, F.S. and Tien, D., “Motions and Hydrodynamic Load of a Ship Advancing in Oblique Waves” , Transcations of the Society Of Navel Architects and Marine Engineers, 88, pp. 225-256, 1980.
15. Kim, C.H., “Motion and Loads of a Catamaran Ship of Arbitrary Shape in a Seaway” , Journal of Hydrodynamics, 10, No1, pp. 8-17, Jan, 1976.
16. Lee, C.M., Jones, H.D. and Curphey, R.M., “Prediction of Motion and Hydrodynamic Load of Catamarans” , Marine Technology, 10, No.4, pp. 392-405, Oct. 1973.
17. Lee, C.M., “Prediction of Motion, Stability and Wave Load of Small-Waterplane-Area, Twin-Hull Ships” , SNAME Trans., 85, pp. 94-130, 1977.
18. LLOYD, A.R.J.M, “Seakeeping: Ship Behaviour in Rough Weather” , Ellis Horwood, Chichester, 1989, ISBN 0-7458-0230-3.
19. Michael, R.D., Nigel, L.W. and Damien S.H., “Measurement and prediction of wave loads on a high-speed catamaran fitted with active stern tabs” , ELSEVIER, Marine Structures, 17, pp. 503-535, 2004.
20. Nakos, D.E., Kring, D.E. and Sclavounos, P.D., “Rankine panel methods for time-domain free surface flows” , In 6th intl. Conf. Num. Ship Hydro. U. Iowa, Iowa City, 1993.
21. Nakos, D.E. and Sclavounos, P.D., “Ship motion by three-dimensional Rankine panel method” , 18th Symposium on Naval Hydrodynamics, Ann Arbor, Michigan 1990.
22. Salvesen, N., Tuck, E.O. and Faltinsen, O., “Ship Motion and Sea Load” , Transcation of the Society of Naval Architects and Marine Engineers, 78, pp. 250-287, 1970.
23. Scragg, C. and Talcott, J., “Numerical Soluation of the DAWSON Free Surface Problem Using Havelock Singularities” , 18th Symposium on Naval Hydrodynamics, Ann Arbor, Michigan, pp. 259-271, 1991.
24. Singh, S.P. and Sen, Debabrata, “A comparative linear and nonlinear ship motion study using 3-D time domain methods” , Ocean Engineering, 34, pp. 1863-1881, 2007.
25. Telste, J.G. and Noblesse, F., “Numerucal Evaluation of the Green Function of Water-Wave Radiation and Diffraction” , Journal of Ship Research, 30, No 2, pp. 69-84, 1986.
26. Wehausen, J.V. and Laitone, C.V., “Surface Waves” ,Handbuck der physik, 9, Spring Verlag, Berlin, 1960.
27. Zhang Xinshu, Bandyk Piotr and Beck, R.F., “Large Amplitude Body Motion Computations in the Time-Domain” , 9th International Conference on Numerical Ship Hydrodynamics, Ann Arbor, Michigan, August, pp. 5-8, 2007.
28. 李傳國, “船體於縱波中運動之時程模擬與穩度的探討”, 國立成功大學造船工程系碩士論文, 1992.
29. 林翰屏, “以小板法求解航行船舶之輻射問題”,國立成功大學造船工程系碩士論文, 1997.
30. 陳榮元, “波浪中航行船舶所受激盪力之三維解”, 國立成功大學造船工程系碩士論文, 1997.
31. 方志中,呂崇湧, “穿浪型雙體船波浪中運動性能之研究”, 第十一屆中國造船暨輪機工程研討會, pp. 340-346, 1998.
32. 李文華, “波浪中雙體船運動之三維分析”, 國立成功大學造船暨船舶機械工程系碩士論文, 2000.
33. 郭柏志, “穩態勢流對雙體船運動之影響”, 國立成功大學造船暨船舶機械工程系碩士論文, 2002.
34. 胡登凱, “波浪中三體船之穩態及非穩態之流體動力解析”, 國立成功大學系統及船舶機電工程系碩士論文, 2007.
35. 顏守平, “以三維理論分析穿浪型雙體船在縱波中運動之時程模擬”, 國立成功大學系統及船舶機電工程系碩士論文, 2009.