簡易檢索 / 詳目顯示

研究生: 曾智揚
Tseng, Chih-Yang
論文名稱: 側鏈含苯并咪唑及二乙醇胺基團之電子傳輸聚亞苯: 合成、鑑定及應用於高分子發光二極體
Electron-transporting Polyphenylenes Containing Pendant Benzimidazolyl and Diethanolamino Groups: Synthesis, Characterization and Application in PLEDs
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 115
中文關鍵詞: 高分子發光二極體電子傳輸濕式製程聚亞苯苯并咪唑二乙醇胺基
外文關鍵詞: PLEDs, electron-transporting, polyphenylene, polar side chain, solution process
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子發光二極體(PLEDs)分別自陽極及陰極注入電洞及電子,傳輸至發光層再結合形成激發子而放出不同光色。若要達到高效率的發光,電洞及電子在發光層內的平衡就相當重要,然而,元件中電洞的傳輸速度通常比電子來得快而造成載子的不平衡,為了解決此問題發展出多層元件來改善電子注入、傳輸能力;傳統上多層元件以真空蒸鍍的方式製備,但由於操作需在高溫下進行,製備環境要求甚嚴且成本較高。故本研究設計並合成出可利用濕式製程的電子傳輸材料,在提高元件效率的同時,亦能降低製備成本。
    本研究成功利用Suzuki Coupling Reaction合成出側鏈含有苯并咪唑及二乙醇胺基基團的聚亞苯(PMBI-NOH、PPBI-NOH),並將其導入多層元件作為電子傳輸材料,以核磁共振光譜(1H NMR)、元素分析儀(EA)、紅外線光譜儀(FTIR)鑑定其結構,並分析其熱性質、光學性質、電化學性質、膜態及元件特性。由於主鏈為剛硬的聚亞苯,使兩高分子擁有高熱裂解溫度(Td > 300 oC)、高玻璃轉移溫度(Tg > 100 oC);PMBI-NOH及PPBI-NOH的薄膜態吸收光譜皆有兩個吸收峰,而薄膜態螢光放光光譜分別在421 nm及424 nm;從循環伏安法可以得到PMBI-NOH及PPBI-NOH之LUMO/HOMO能階分別為-2.58/-5.61 eV及-2.70/-5.70 eV,由於側鏈含有苯并咪唑及二乙醇胺基基團可以降低LUMO及HOMO能階,不僅能讓電子更容易進入發光層,同時也具有電洞阻擋的特性。以旋轉塗佈法將PMBI-NOH及PPBI-NOH塗佈於發光層(Super Yellow: SY)上作為電子傳輸層(ETL)製備多層螢光元件(ITO/PEDOT:PSS/SY/ETL/LiF/Al),PMBI-NOH由於在共溶劑中的溶解度差和表面膜態不好,導致無法有效地改善元件的表現;在無加入電子傳輸層之元件最大亮度為8,690 cd/m2,最大電流效率為2.78 cd/A,而加入PPBI-NOH作為電子傳輸層之元件,最大亮度提升至12,881 cd/m2,最大電流效率亦提升至10.94 cd/A。
    研究結果顯示,作為元件之電子傳輸層的應用上,PPBI-NOH的表現勝過PMBI-NOH,除了溶解度的因素之外,加入PPBI-NOH可以使電洞及電子在發光層中更加平衡;PPBI-NOH不僅能改善電子注入/傳輸的能力,也具有卓越的電洞阻擋特性,大幅提升元件之表現,並且能以濕式製程的方式塗佈製作,在電子傳輸材料的應用上具有發展潛力。

    Charge balance is a crucial factor in enhancing device efficiency of polymer light-emitting diodes (PLEDs). An electron-transporting layer is inserted in multilayer PLEDs to solve the problem of low electron mobility. Electron-transporting materials containing electron-withdrawing groups and polar side chains effectively enhance device performance. In this study, two new electron-transporting polyphenylenes PMBI-NOH and PPBI-NOH, linked via meta- and para-position respectively, have been designed and synthesized to be applied as electron-transporting layer or hole-blocking layer. Both polymers possess excellent thermal stability (Td > 300 oC, Tg > 100 oC) due to their rigid backbones. In addition, their LUMO (~ -2.70 eV) and HOMO (~ -5.70 eV) levels are effectively lowered by the benzimidazolyl and diethanolamino groups, resulting in improved electron-injection and hole-blocking capabilities. Multilayer yellow emitting PLEDs with a configuration of ITO/PEDOT:PSS/SY/ETL/LiF/Al were fabricated by spin-coating process. The maximum luminance and maximum current efficiency of PPBI-NOH-based device were 12,881 cd/m2 and 10.94 cd/A respectively, superior to the performance of PMBI-NOH-based device (4,938 cd/m2, 3.70 cd/A) and the device without ETL (8690 cd/m2, 2.78 cd/A).

    摘要 I 誌謝 X 目錄 XII 流程目錄 XV 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1-1. 前言 1 1-2. 理論基礎 4 1-2-1. 有機材料的共軛導電特性[4] 4 1-2-2. 螢光理論[5, 6] 5 1-2-3. 影響螢光強度之要點 8 1-2-4. 能量機制[8, 9] 10 1-2-5. 分子間激發態[11, 12] 13 1-3. 元件發光原理[14-17] 15 1-4. 元件結構 17 1-4-1. 單層元件[20] 17 1-4-2. 多層元件[21] 19 第二章 文獻回顧 21 2-1. 有機電激發光材料的分類[22] 21 2-1-1. 發光層材料 22 2-1-2. 電洞注入/傳輸材料(HIM/HTM)[21] 23 2-1-3. 電子注入/傳輸材料(EIM/ETM) 24 2-2. 有機發光二極體的效率[21, 43] 26 2-2-1. 影響有機發光二極體效率的參數 26 2-2-2. 增進載子平衡的方法 28 2-3. 濕式製程(Solution Process) 31 2-4. Suzuki-Miyaura Coupling Reaction 32 2-5. 研究動機 33 第三章 實驗內容 35 3-1. 實驗裝備與設備 35 3-2. 鑑定儀器 37 3-3. 物性及光電特性測量儀器 39 3-4. 實驗藥品及材料 46 3-5. 合成步驟 48 3-6. 單體及高分子的合成 50 3-7. 元件設計、製作及量測 55 3-7-1. PLED元件之電子注入/傳輸層應用 55 3-7-2. PLED元件之電子傳輸層/電洞阻擋層應用 60 3-7-3. Hole-only元件製作步驟 61 3-7-4. Electron-only元件製作步驟 61 第四章 結果與討論 62 4-1. 單體與高分子的合成與鑑定 63 4-1-1. 核磁共振光譜(NMR) 63 4-1-2. 元素分析儀(EA) 65 4-1-3. 紅外線光譜儀(FTIR) 66 4-2. 高分子分子量分析 72 4-3. 熱性質分析 73 4-3-1. 熱重分析(TGA) 73 4-3-2. 微差式掃描熱卡計分析(DSC) 74 4-4. 光學性質分析 76 4-4-1. UV/Vis吸收光譜及PL發光光譜 76 4-5. 電化學性質分析 79 4-6. 高分子成膜性質分析 82 4-7. 高分子發光二極體元件特性 86 4-7-1. PMBI-NOH和PPBI-NOH之元件結構與能階 86 4-7-2. PMBI-NOH應用於電子注入/傳輸層之元件特性 88 4-7-3. PPBI-NOH應用於電子注入/傳輸層之元件特性 92 4-7-4. PMBI-NOH及PPBI-NOH應用於電子傳輸/電洞阻擋層 97 4-8. 元件表現探討 102 4-8-1. 高分子材料的成膜性質 103 4-8-2. 單一載子元件(Single-carrier Devices) 104 第五章 結論 107 第六章 參考文獻 109

    1. M. Pope, P. Magnante, and H. P. Kallmann, Electroluminescence in Organic Crystals. Journal of Chemical Physics, 1963. 38(8): p. 2042-&.
    2. C. W. Tang and S. A. Vanslyke, Organic Electroluminescent Diodes. Applied Physics Letters, 1987. 51(12): p. 913-915.
    3. 段啟聖,化工資訊雜誌與商情,2005。26: p. 40。
    4. 郭昭輝,塑膠資訊雜誌,2002。
    5. D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis. 6th edition, 2007.
    6. J. R. Lakowicz, Principles of Fluorescence Spectroscopy. 3rd edition, 2006.
    7. Y. R. Pu and Y. Chen, Bipolar Electronphosphorescence Host Materials Composed of Carbazole and Oxadiazole or Triazole: Synthesis, Characterization and Optoelectronic Applications. 2014.
    8. V. May and O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems. 2nd revised and enlarged edition, 2004.
    9. Z. H. Kafafi, Organic Electroluminescence, 2005.
    10. L. T. Corporation, Fluorescence Resonance Energy Transfer (FRET)-Note 1.2.
    11. V. Tran and B. J. Schwartz, Role of nonpolar forces in aqueous solvation: Computer simulation study of solvation dynamics in water following changes in solute size, shape, and charge. Journal of Physical Chemistry B, 1999. 103(26): p. 5570-5580.
    12. L. Akcelrud, Electroluminescent polymers. Progress in Polymer Science, 2003. 28(6): p. 875-962.
    13. J. Guillet, Polymer Photophysics and Photochemistry, 1985.
    14. 陳信宏、陳雲,中工高雄會刊,2006。第3期: p. 72。
    15. 黃孝文、陳雲,化工資訊月刊,2001。第15卷第3期: p. 8。
    16. 葉昆明、陳雲,科學發展,2005。第385期: p. 58。
    17. K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Highly efficient organic devices based on electrically doped transport layers. Chemical Reviews, 2007. 107(4): p. 1233-1271.
    18. M. A. Baldo, M. E. Thompson, and S. R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature, 2000. 403(6771): p. 750-3.
    19. T. Sugimoto and K. Fukutani, Electron-field-induced nuclear-spin flips mediated by enhanced spin-orbit coupling. Nature Physics, 2011. 7: p. 307-310.
    20. 楊素華,光訊雜誌,2002。第98期: p. 29。
    21. 陳金鑫、黃孝文,有機電激發光材料與元件,2005。
    22. J. L. Segura, The chemistry of electroluminescent organic materials. Acta Polymerica, 1998. 49(7): p. 319-344.
    23. Y. Yang and A. J. Heeger, A new architecture for polymer transistors. Nature, 1994. 372: p. 344.
    24. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, and S. C. Moratti, Efficient photodiodes from interpenetrating polymer networks. Nature, 1995. 376: p. 498.
    25. H. A. M. V. Mullekom, J. A. J. M. Vekemans, E. E. Havinga, and E. W. Meijer, Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Materials Science and Engineering, 2001. 32: p. 1.
    26. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Flexible Light-Emitting-Diodes Made from Soluble Conducting Polymers. Nature, 1992. 357(6378): p. 477-479.
    27. A. J. Heeger, Semiconducting and metallic polymers: The fourth generation of polymeric materials. Journal of Physical Chemistry B, 2001. 105(36): p. 8475-8491.
    28. J. Li, J. Liu, C. Gao, J. Zhang, and H. Sun, Influence of MWCNTs Doping on the Structure and Properties of PEDOT:PSS Films. International Journal of Photoenergy, 2009. 2009: p. 1-5.
    29. R. G. Kepler, Charge Carrier Production and Mobility in Anthracene Crystals. Physical Review, 1960. 119(4): p. 1226-1229.
    30. E. H. Martin and J. Hirsch, Determination of Carrier Mobility in Plastics by a Time-of-Flight Method. Solid State Communications, 1969. 7(10): p. 783-&.
    31. G. Horowitz, Organic field-effect transistors. Advanced Materials, 1998. 10(5): p. 365-377.
    32. A. Babel and S. A. Jenekhe, High electron mobility in ladder polymer field-effect transistors. Journal of the American Chemical Society, 2003. 125(45): p. 13656-13657.
    33. X. J. Zhang and S. A. Jenekhe, Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions. Macromolecules, 2000. 33(6): p. 2069-2082.
    34. S. A. Jenekhe and S. J. Yi, Efficient photovoltaic cells from semiconducting polymer heterojunctions. Applied Physics Letters, 2000. 77(17): p. 2635-2637.
    35. F. Wang, J. Hu, X. Cao, T. Yang, Y. Tao, L. Mei, X. Zhang, and W. Huang, A low-cost phenylbenzoimidazole containing electron transport material for efficient green phosphorescent and thermally activated delayed fluorescent OLEDs. J. Mater. Chem. C, 2015. 3(21): p. 5533-5540.
    36. C. Shih, P. Rajamalli, C. Wu, M. Chiu, L. Chu, and C. Cheng, A high triplet energy, high thermal stability oxadiazole derivative as the electron transporter for highly efficient red, green and blue phosphorescent OLEDs. J. Mater. Chem. C, 2015. 3(7): p. 1491-1496.
    37. C. V. Hoven, A. Garcia, G. C. Bazan, and T. Nguyen, Recent Applications of Conjugated Polyelectrolytes in Optoelectronic Devices. Advanced Materials, 2008. 20(20): p. 3793-3810.
    38. H. F., H. Wu, D. Wang, Y. W., and C. Y., Novel Electroluminescent Conjugated Polyelectrolytes Based on Polyfluorene. Chem. Mater., 2004. 16: p. 708-716.
    39. H. Xiao, J. Miao, J. Cao, W. Yang, H. Wu, and Y. Cao, Alcohol-soluble polyfluorenes containing dibenzothiophene-S,S-dioxide segments for cathode interfacial layer in PLEDs and PSCs. Organic Electronics, 2014. 15(3): p. 758-774.
    40. H. H. Lu, Y. S. Ma, N. J. Yang, G. H. Lin, Y. C. Wu, and S. A. Chen, Creating a pseudometallic state of K+ by intercalation into 18-crown-6 grafted on polyfluorene as electron injection layer for high performance PLEDs with oxygen- and moisture-stable Al cathode. Journal of the American Chemical Society, 2011. 133(25): p. 9634-7.
    41. X. Xu, B. Han, J. Chen, J. Peng, H. Wu, and Y. Cao, 2,7-Carbazole-1,4-phenylene Copolymers with Polar Side Chains for Cathode Modifications in Polymer Light-Emitting Diodes. Macromolecules, 2011. 44(11): p. 4204-4212.
    42. C. Wu and Y. Chen, Hydroxyethyl cellulose filled with M2+ chelate complexes with ethylenediaminetetraacetic acid (EDTA) as an effective electron-injection layer for polymer light-emitting diodes. Organic Electronics, 2015. 25: p. 156-164.
    43. M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers (vol 409, pg 494, 2001). Nature, 2001. 411(6837): p. 617-617.
    44. J. J. Lih, C. I. Chao, and C. C. Lee. Proceedings of SID'06. 2006.
    45. G. G. Malliaras and J. C. Scott, The roles of injection and mobility in organic light emitting diodes. Journal of Applied Physics, 1998. 83(10): p. 5399-5403.
    46. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, and M. Tsuchida, Organic EL Cells Using Alkaline Metal Compounds as Electron Injection Materials. IEEE transactions on electron devices, 1997. 44: p. 1245.
    47. C. Ganzorig, K. Suga, and M. Fujihira, Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2001. 85(2-3): p. 140-143.
    48. C. Ganzorig and M. Fujihira, Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition. Applied Physics Letters, 2004. 85(20): p. 4774-4776.
    49. M. Stossel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, and A. Winnacker, Space-charge-limited electron currents in 8-hydroxyquinoline aluminum. Applied Physics Letters, 2000. 76(1): p. 115-117.
    50. T. H. Lee, J. C. A. Huang, G. L. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, and Y. J. Hsu, Organic-Oxide Cathode Buffer Layer in Fabricating High-Performance Polymer Light-Emitting Diodes. Advanced Functional Materials, 2008. 18(19): p. 3036-3042.
    51. M. W. Lin, T. C. Wen, Y. J. Hsu, and T. F. Guo, Poly(ethylene oxide)-functionalized Al cathodes of tunable electron-injection capabilities for efficient polymer light-emitting diodes. Journal of Materials Chemistry, 2011. 21: p. 18840.
    52. 周聖穎,主鏈含三聯苯及四乙二醇醚機團之高分子:合成、鑑定及光電應用,2014。
    53. W. L. Ma, P. K. Iyer, X. Gong, B. Liu, D. Moses, G. C. Bazan, and A. J. Heeger, Water/Methanol-Soluble Conjugated Copolymer as an Electron-Transport Layer in Polymer Light-Emitting Diodes. Advanced Materials, 2005. 17: p. 274-277.
    54. Z. Gao, R. Huang, Y. Lin, Y. Zheng, Y. Liu, and B. Wei, Reduced turn-on voltage and improved efficiency with free interfacial energy barrier in organic light-emitting diodes. Synthetic Metals, 2015. 207: p. 26-30.
    55. N. Miyaura and A. Suzuki, Stereoselective Synthesis of Arylated (E) -Alkenes by the Reaction of Alk-1 -enylboranes with Aryl Halides in the Presence of Palladium catalyst. Journal of the Chemical Society, Chemical Communications, 1979: p. 866-867.
    56. N. Miyaura and A. Suzuki, Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews, 1995. 95: p. 2457-2483.
    57. J. F. Rusling and S. L. Suib, Characterizing Materials with Cyclic Voltammetry. Advanced Materials, 1994. 6: p. 922-930.
    58. K. Manabe, W. Hu, M. Matsumura, and H. Naito, Transport of carriers in organic light-emitting devices fabricated with a p-phenylenevinylene-derivative copolymer. Journal of Applied Physics, 2003. 94(3): p. 2024.
    59. R. Steyrleuthner, S. Bange, and D. Neher, Reliable electron-only devices and electron transport in n-type polymers. Journal of Applied Physics, 2009. 105(6): p. 064509.
    60. W. Li, J. Li, D. Liu, F. Wang, and S. Zhang, Bipolar host materials for high-efficiency blue phosphorescent and delayed-fluorescence OLEDs. J. Mater. Chem. C, 2015. 3(48): p. 12529-12538.
    61. N. Vijayan, R. Ramesh Babu, R. Gopalakrishnan, P. Ramasamy, and W. T. A. Harrison, Growth and characterization of benzimidazole single crystals: a nonlinear optical material. Journal of Crystal Growth, 2004. 262(1-4): p. 490-498.
    62. I. Natori, S. Natori, and H. Sato, Soluble polyphenylene homopolymers with controllable microstructure and properties: Optical and electrical characteristics of completely dehydrogenated poly(1,3-cyclohexadiene) as a π-conjugated polymer semiconductor. Polymer, 2006. 47(20): p. 7123-7130.
    63. T. Earmme and S. A. Jenekhe, High-performance multilayered phosphorescent OLEDs by solution-processed commercial electron-transport materials. Journal of Materials Chemistry, 2012. 20: p. 4660-4668.
    64. L. J. Rozanski, E. Castaldelli, F. L. M. Sam, C. A. Mills, G. J. F. Demets, and S. R. P. Silva, Solution processed naphthalene diimide derivative as electron transport layers for enhanced brightness and efficient polymer light emitting diodes. Journal of Materials Chemistry C, 2013. 1(20): p. 3347-3352.

    下載圖示 校內:2017-09-01公開
    校外:2017-09-01公開
    QR CODE