| 研究生: |
萬龍瑞 Wan, Long-Ray |
|---|---|
| 論文名稱: |
具結石粉碎分析功能之高效率震波產生器研究 Study On Efficient Shock Wave Generator with Stone Fragmentation Analysis |
| 指導教授: |
梁勝明
Liang, Shen-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 體外震波碎石術 、判斷結石粉碎 |
| 外文關鍵詞: | fragmentation, texture, shock wave focusing |
| 相關次數: | 點閱:85 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具結石粉碎分析功能之高效率震波產生器研究
學 生:萬龍瑞
指導教授:梁勝明 馬亞尼
中文摘要
自體外震波碎石術發展至今尚未有一套能判斷結石粉碎程度的系統,在以往的治療過程中通常是以專業醫師的經驗來判斷結石的粉碎情況,但人力有限且判斷結果通常會隨者判斷者的不同而有所改變,因此我們希望建立一套能由電腦判讀結石粉碎程度的系統,如此一來我們不斷可以精確的判斷接石粉碎的程度更可以有一套客觀的標準。在本研究中,我們以多種影像分析的方法判斷結石在超音波掃瞄器下的破碎情形,並找出其中2種有效的方法來做為判讀系統的基礎。然而在我們的方法中Entropy和ASM的判讀有令人滿意的結果,以上兩者的判讀值有一定的趨勢並且會在結石完全粉碎時會出現一個峰值並開始有相反的趨勢,如果我們在結石粉碎後繼續給予震波則粉碎的石頭會開始因為震波的高壓而聚合成另外一個密實的固體,這給予我們一個明確的指標:當峰值出現時我們就必須停止震波的治療,否則會造成反效果而形成另一個結石的出現。傳統的觀念上認為如果不考慮震波對組織的傷害,給予越多的震波會使得結石的粉碎率越高,所以在治療的過程中大多是在病人的疼痛容忍範圍內或是止痛藥的時效內盡量給予大量的震波治療,本研究的結果顯示傳統的治療方式有待商榷並給予體外震波碎石術一個明確的指標。
Study on Efficient Shock Wave Generator with Stone Fragmentation Analysis
Student: Long-Ray Wan
Advisor: Shen-Min Liang, Ioannis Manousakas
Abstract
Up to date, there is no any extracorporeal shock wave lithotripsy system equipped with a kidney stone fragmentation estimation device. Therefore, doctors have to estimate status of the stone fragmentation by using ultrasound or X-ray justified it by their experience. Thus, the extent of stone fragmentation is always different depending on each doctor’s experience. A computerized system with a standard method for estimating the stone fragmentation has been investigated. In this study, four methods of image processing on the ultrasound images have been tested, and two methods of which work efficiently. The results on the pattern texture by the Entropy method and Angular Second Moment (ASM) methods are suitable for our requirements. Both have a stable trend, no matter the trend is increasing or decreasing, when kidney stone is being fragmented. It is found that both trends can be reversed as the stone is fully fragmented. This implies that, if we apply too many numbers of shock waves, the stone fragments will be compressed together to a compact form. This gives us a clear indication, namely, terminating stone treatment is needed when a peak or valley appears in the curve-fitted line obtained from fragmentation measurements, otherwise a solid stone will be regenerated. This result differs from the current treatment philosophy, and is worthwhile to implement this methodology for the next-generation lithotripsy in future work.
[1] 戴興邦,尤芳忞楊智光,梁勝明,蒲永仁,郭昭霖,陳天送,陳進興”中華民國醫學工程科技研討會論文集” , pp. 256-263,1998.
[2] 楊智光,“體外震波碎石機反射罩杯之設計”,成功大學航空太空工程研究所,碩士論文,台南市,1998。
[3] 李衍德,“水電型體外震波碎石機反射罩杯之設計”,國立成功大學航空太空工程研究所,碩士論文,台南市,1999。
[4] 陳進興、陳天送,改進國產體外震波碎石機之技術開發(1/3)體外震波碎石機即時超音波結石定位系統之開發,行政院國科會產學合作計劃成果報告,台南市,1997。
[5] Coleman, A. J., and Saunders, J. E., “A Survey of the Acoustic Output of Commercial Extracorporeal Shock Wave Lithotripters,” Ultrasound in Medicine and Biology, Vol. 15. No. 3, pp. 213-227, 1989
[6] Sturtevant, B.,”Shock Wave Physics of Lithotriptors” in Smith’s Textbook of Endourology, Quality Medical Publishing, Inc., pp. 529-552,1996.
[7] Petty, R. W. and Kantrowitz, A., “The Production and Stability of Converging Shock Waves” Journal of Applied Physics, Vol. 22, No. 7, pp. 878-886, 1951.
[8] Bailitis, E., “Der Schallimpuls eines Flüssigkeitsfunkens (The Pressure Pulse of a Liquid Spark),” Zeitschrift für angewandte Physik einschlieβlch Nckleonik, Vol. 9, pp. 429-434.1957.
[9] Häusler, E. and Kiefer, W., “Anregung von Stosswellen in Flüssigkeiten durch Hochgeschwindigkeitswassertropfen,” Verh Dtsch Physik Ges, Vol. 10, pp. 36, 1971.
[10] Chaussy, C., Schmiedt, E., Jocham, D., Schuller, J., Brendel, H., and Liedl, B., “Extracorporeal Shock-Wave Lithotripsy (ESWL) for treatment of Urolithiasis,” Urology, Vol. 93, pp. 59, 1984.
[11] Chaussy, C., Schmiedt, E., Jocham, D., Brendel, W., Forssmann, B., and Walther, W., ”First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves,” Journal of Urology, Vol. 127, pp. 417-420, 1982.
[12] Hunter, P. T., Finayson, B., Robert, J., Hirko, W. C., Voreck, R. W., Scott W., Mohammed, N., “Measurement of Shock Wave Pressures Used for Lithotripsy,” Journal of Urology, Vol. 136, pp. 733-738, 1986.
[13] Chuong, C. J. “Different Stone Damage Modes During Lithotripsy Shock Wave Delivery” Biomechanics Symposium, pp. 5-8, 1989.
[14] Charles, C. J., Pei Zhong and Glenn Preminger, M. “A Comparison of Stone Damage Caused by Different Modes of Shock Wave Generation” Journal of Urology, Vol. 148, 200-205, July 1992.
[15] 郭昭霖,“體外震波碎石機自動追蹤系統”,成功大學醫學工程研究所,碩士論文,台南市,2000。
[16] 顏志成,“水電式體外震波碎石機電極之間距控制設計”, 國立成功大學航空太空工程研究所,碩士論文,台南市,2001。
[17] 王嘉輝,“水電式體外震波碎石機電極間距自動控制系統設計和性能評估”, 國立成功大學航空太空工程研究所,碩士論文,台南市,2001。
[18] 戴興邦,“體外震波碎石機之性能評估”,成功大學航空太空工程研究所,碩士論文,台南市,1998。
[19] Robert M. Haralick, Linda G. Shapiro, “Computer and Robot Vision” Vol. 1, pp. 453-494, 1992.
[20] Madsen EL, Zagzebski JA, Macdonald MC, Frank GR., “Ultrasound focal lesion detectability phantoms” Med Phys. 1991 Nov-Dec; 18(6):1171-80.
[21] Dong F, Madsen EL, MacDonald MC, Zagzebski JA., “Nonlinearity parameter for tissue-mimicking materials” Ultrasound Med Biol. 1999 Jun; 25(5):831-8.
[22] Macdonald MC, Madsen EL., “Acoustic measurements in a tissue mimicking liquid” J Ultrasound Med. 1999 Jan; 18(1):55-62.