| 研究生: |
羅愈婷 Lo, Yu-Ting |
|---|---|
| 論文名稱: |
探討長鏈非編碼核糖核酸H19在類風濕性關節中扮演的角色 The Role of Long Non-coding RNA H19 in Rheumatoid Joint |
| 指導教授: |
王崇任
Wang, Chrong-Reen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 類風濕性關節炎 、長鏈非編碼核糖核酸 、滑膜纖維母細胞 |
| 外文關鍵詞: | rheumatoid arthritis, synovial fibroblast, long non-coding RNA H19 |
| 相關次數: | 點閱:99 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
類風濕性關節炎是一種慢性自體免疫疾病,能引起多處週邊關節發炎,其病徵為關節內滑膜組織發炎增厚帶有白血球浸潤,大量增生的滑膜纖維母細胞聚集形成血管翳,進而侵蝕軟骨、破壞硬骨而造成關節受損。在類風濕性關節炎的滑膜纖維母細胞內長鏈非編碼核糖核酸(long non-coding RNA, lncRNA)具有調控其致病性的角色,過去的研究發現lncRNA H19在類風濕性關節炎病人的滑膜組織中有異常高表現並在其致病機轉中有潛在性之重要功能。本研究吾人探討H19參與tumor necrosis factor (TNF)調控之活化滑膜纖維母細胞的功能,並以clustered regularly interspaced short palindromic repeats interference (CRISPRi) 檢驗減少H19在滑膜纖維母細胞中的表現量對類風濕性關節的治療效果。我們發現類風濕性關節炎患者的滑膜組織、分離出的滑膜纖維母細胞及周邊單核白血球之H19表現量明顯較對照組退化性關節炎病患檢體高,而臨床上施打TNF單株抗體三週後類風濕性關節炎病人的周邊單核白血球中H19表現量下降。我們進一步證明以TNF刺激滑膜纖維母細胞使其H19及enhancer of zeste homolog 2 (EZH2)表現量增加,顯示兩者在滑膜纖維母細胞之表現可能受TNF調控。以慢病毒載體CRISPRi-H19轉殖之大鼠關節炎滑膜纖維母細胞相較對照組載體CRISPRi-GFP轉殖者EZH2、phosphorylated GSK-3β及Snail表現量均減少,其IL-6分泌量及細胞侵略能力皆下降。最後我們以慢病毒載體CRISPRi-H19在關節炎模式大鼠進行關節內注射實驗,顯示減少H19基因表現量在大鼠關節炎中可減緩其發炎。本研究結果顯示在類風濕性關節炎之滑膜纖維母細胞中H19可透過EZH2-Wnt signaling-Snail路徑來調節TNF調控之活化。
In rheumatoid arthritis (RA), an autoimmune disease affecting peripheral joints, there are hyperplastic synovial membranes infiltrated with immune cells and synovial fibroblasts (SFs). Activated SFs with inflammatory and invasive phenotypes are responsible for synovitis, cartilage erosion and joint destruction. Previous reports have shown that the long non-coding RNA (lncRNA) H19 plays an important role in the tumorigenesis and is overexpressed in RA synovial tissues (STs) with a potential implication in the pathogenesis. In this study, we explored whether H19 is involved in tumor necrosis factor (TNF)-mediated SF activation in rheumatoid joint. H19 expression levels were higher in peripheral blood mononuclear cells (PBMCs), STs, and SFs of RA patients in comparison with osteoarthritis counterparts, as determined by quantitative real-time PCR. After receiving anti-TNF injection for 3 weeks, H19 expression levels were decreased in PBMCs of RA patients. Furthermore, H19 and enhancer of zeste homolog 2 (EZH2) expression were induced in SFs in response to TNF stimulation. To further elucidate the pathogenic mechanisms of H19 in SF activation, we used lentivirus-based CRISPR interference (CRISPRi) targeting H19 (LVCRISPRi-H19). The expression levels of EZH2, phosphorylated GSK-3β, and Snail were down-regulated in LVCRISPRi-H19-transduced SF transfectants. Silencing H19 expression in SFs reduced the cell invasive capacity and IL-6 secretion. Moreover, targeting synovial H19 expression through intra-articular injection of LVCRISPRi-H19 ameliorated collagen-induced arthritis. Collectively, our results suggest that H19 regulates the activation of SF in rheumatoid joint through the EZH2-Wnt signaling-Snail pathway.
Ariel, I., de Groot, N., and Hochberg, A. (2000). Imprinted H19 gene expression in embryogenesis and human cancer: the oncofetal connection. Am. J. Med. Genet. 91, 46–50.
Armaka, M., Ospelt, C., Pasparakis, M., and Kollias, G. (2018). The p55TNFR-IKK2-Ripk3 axis orchestrates arthritis by regulating death and inflammatory pathways in synovial fibroblasts. Nat. Commun. 9, 618.
Bartok, B., and Firestein, G.S. (2010). Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255.
Barton, A., and Worthington, J. Genetic susceptibility to rheumatoid arthritis: an emerging picture. Arthritis Care Res (Hoboken). 61, 1441–1446.
Bathon, J.M., and McMahon, D.J. (2013). Making rational treatment decisions in rheumatoid arthritis when methotrexate fails. N. Engl. J. Med. 369, 384–385.
Bottini, N., and Firestein, G.S. (2013). Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24–33.
Bottini, N., and Firestein, G.S. (2013). Epigenetics in rheumatoid arthritis: a primer for rheumatologists. Curr. Rheumatol. Rep. 15, 372.
Brennan, F.M., and McInnes, I.B. (2008). Evidence that cytokines play a role in rheumatoid arthritis. J. Clin. Invest. 118, 3537–3545.
Carlens, C., Hergens, M.-P., Grunewald, J., Ekbom, A., Eklund, A., Höglund, C.O., and Askling, J. (2010). Smoking, use of moist snuff, and risk of chronic inflammatory diseases. Am. J. Respir. Crit. Care Med. 181, 1217–1222.
Chen, S.-Y., Shiau, A.-L., Shieh, G.-S., Su, C.-H., Lee, C.-H., Lee, H.-L., Wang, C.-R., and Wu, C.-L. (2009). Amelioration of experimental arthritis by a telomerase-dependent conditionally replicating adenovirus that targets synovial fibroblasts. Arthritis Rheum. 60, 3290–3302.
Chen, S.-Y., Shiau, A.-L., Li, Y.-T., Lin Y.-S., Lee, C.-H., Wu, C.-L., and Wang, C.-R. (2012). Suppression of collagen-induced arthritis by intra-articular lentiviral vector-mediated delivery of Toll-like receptor 7 short hairpin RNA gene. Gene Ther. 19, 752–760.
Chen, S.-Y., Shiau, A.-L., Li, Y.-T., Lin, C.-C., Jou, I.-M., Liu, M.-F., Wu, C.-L., and Wang, C.-R. (2015). Transcription factor snail regulates tumor necrosis factor α-mediated synovial fibroblast activation in the rheumatoid joint. Arthritis Rheumatol. 67, 39–50.
Cheng, A.S.L., Lau, S.S., Chen, Y., Kondo, Y., Li, M.S., Feng, H., Ching, A.K., Cheung, K.F., Wong, H.K., Tong, J.H., Jin, H., Choy, K.W., Yu, J., To, K.F., Wong, N., Huang, T.H., and Sung, J.J. (2011). EZH2-mediated concordant repression of Wnt antagonists promotes β-catenin-dependent hepatocarcinogenesis. Cancer Res. 71, 4028–4039.
Croft, A.P., Naylor, A.J., Marshall, J.L., Hardie, D.L., Zimmermann, B., Turner, J., Desanti, G., Adams, H., Yemm, A.I., Müller-Ladner, U., Dayer, J.M., Neumann, E., Filer, A., and Buckley, C.D. (2016). Rheumatoid synovial fibroblasts differentiate into distinct subsets in the presence of cytokines and cartilage. Arthritis Res. Ther. 18, 270.
Das, A.M., Seynhaeve, A.L., Rens, J.A., Vermeulen, C.E., Koning, G.A., Eggermont, A.M., and Ten, T.H. (2014). Differential TIMP3 expression affects tumor progression and angiogenesis in melanomas through regulation of directionally persistent endothelial cell migration. Angiogenesis 17, 163–177.
Fassbender, H.G., and Simmling-Annefeld, M. (1983). The potential aggressiveness of synovial tissue in rheumatoid arthritis. J. Pathol. 139, 399–406.
Fazi, B., Garbo, S., Toschi, N., Mangiola, A., Lombari, M., Sicari, D., Battistelli, C., Galardi, S., Michienzi, A., Trevisi, G., Harari-Steinfeld, R., Cicchini, C., and Ciafrè, S.A. (2018). The lncRNA H19 positively affects the tumorigenic properties of glioblastoma cells and contributes to NKD1 repression through the recruitment of EZH2 on its promoter. Oncotarget 9, 15512–15525.
Firestein, G.S., and McInnes, I.B. (2017). Immunopathogenesis of Rheumatoid Arthritis. Immunity 46, 183–196.
Fütterer, A., Mink, K., Luz, A., Kosco-Vilbois, M.H., and Pfeffer, K. (1998). The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70.
Huber, L.C., Distler, O., Tarner, I., Gay, R.E., Gay, S., and Pap, T. (2006). Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology (Oxford) 45, 669–675.
Izquierdo, E., Cañete, J.D., Celis, R., Santiago, B., Usategui, A., Sanmartí, R., Rey, M.J. del, and Pablos, J.L. (2009). Immature blood vessels in rheumatoid synovium are selectively depleted in response to anti-TNF therapy. PLoS One 4, e8131.
Jou, I.-M., Shiau, A.-L., Chen, S.-Y., Wang, C.-R., Shieh, D.-B., Tsai, C.-S., and Wu, C.-L. (2005). Thrombospondin 1 as an effective gene therapeutic strategy in collagen-induced arthritis. Arthritis Rheum. 52, 339–344.
Kallen, A.N., Zhou, X.-B., Xu, J., Qiao, C., Ma, J., Yan, L., Lu, L., Liu, C., Yi, J.-S., Zhang, H., Min, W., Bennett, A.M., Gregory, R.I., Ding, Y., and Huang, Y. (2013). The imprinted H19 lncRNA antagonizes Let-7 microRNAs. Mol. Cell 52, 101–112.
Kennedy, A., Ng, C.T., Biniecka, M., Saber, T., Taylor, C., O’Sullivan, J., Veale, D.J., and Fearon, U. (2010). Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis Rheum. 62, 711–721.
Kleer, C.G., Cao, Q., Varambally, S., Shen, R., Ota, I., Tomlins, S.A., Ghosh, D., Sewalt, R.G.A.B., Otte, A.P., Hayes, D.F., Sabel, M.S., Livant, D., Weiss, S.J., Rubin, M.A., and Chinnaiyan, A.M. (2003). EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. USA 100, 11606–11611.
Kotyla, P.J. (2018). Bimodal function of anti-TNF treatment: shall we be concerned about anti-TNF treatment in patients with rheumatoid arthritis and heart failure? Int. J. Mol. Sci. 19. E1739.
Lauzier, A., Lavoie, R.R., Charbonneau, M., Gouin-Boisvert, B., Harper, K., and Dubois, C.M. (2016). Snail is a critical mediator of invadosome formation and joint degradation in arthritis. Am. J. Pathol. 186, 359–374.
Lee, A., Qiao, Y., Grigoriev, G., Chen, J., Park‐Min, K.-H., Park, S.H., Ivashkiv, L.B., and Kalliolias, G.D. (2013). Tumor necrosis factor α induces sustained signaling and a prolonged and unremitting inflammatory response in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 65, 928–938.
Lefèvre, S., Knedla, A., Tennie, C., Kampmann, A., Wunrau, C., Dinser, R., Korb, A., Schnäker, E.-M., Tarner, I.H., Robbins, P.D., Evans, C.H., Stürz, H., Steinmeyer, J., Gay, S., Schölmerich, J., Pap, T., Müller-Ladner, U., and Neumann, E. (2009). Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420.
Liang, W.-C., Fu, W.-M., Wang, Y.-B., Sun, Y.-X., Xu, L.-L., Wong, C.-W., Chan, K.-M., Li, G., Waye, M.M.-Y., and Zhang, J.-F. (2016). H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci. Rep. 6, 20121.
Liu, X.Z., Fan, J., Qi, K., Liu, S.P., Xu, W.D., Gao, Y., Gu, X.D., Li, J., Bai, C.G., Shi, Y.Q., Zhang, L.L., and Zhao, D.B. (2017). Dishevelled2 promotes apoptosis and inhibits inflammatory cytokine secretion in rheumatoid arthritis fibroblast-like synoviocytes through crosstalk with the NF-κB pathway. Oncotarget 8, 12649–12663.
Lories, R.J., Corr, M., and Lane, N.E. (2013). To Wnt or not to Wnt: the bone and joint health dilemma. Nat. Rev. Rheumatol. 9, 328–339.
Luo, M., Li, Z., Wang, W., Zeng, Y., Liu, Z., and Qiu, J. (2013). Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 333, 213–221.
MacLauchlan, S., Zuriaga, M.A., Fuster, J.J., Cuda, C.M., Jonason, J., Behzadi, F., Duffen, J.P., Haines, G.K., Aprahamian, T., Perlman, H., and Walsh, K. (2017). Genetic deficiency of Wnt5a diminishes disease severity in a murine model of rheumatoid arthritis. Arthritis Res. Ther. 19, 166.
Manicourt, D.H., Triki, R., Fukuda, K., Devogelaer, J.P., Nagant de Deuxchaisnes, C., and Thonar, E.J. (1993). Levels of circulating tumor necrosis factor alpha and interleukin-6 in patients with rheumatoid arthritis. Relationship to serum levels of hyaluronan and antigenic keratan sulfate. Arthritis Rheum. 36, 490–499.
McInnes, I.B., and Schett, G. (2011). The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219.
Miao, C., Yang, Y., He, X., Li, X., Huang, C., Huang, Y., Zhang, L., Lv, X.-W., Jin, Y., and Li, J. (2013). Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell. Signal. 25, 2069–2078.
Mu, N., Gu, J., Huang, T., Zhang, C., Shu, Z., Li, M., Hao, Q., Li, W., Zhang, W., Zhao, J., Zhang, Y., Huang, L., Wang, S., Jin, X., Xue, X., Zhang, W., and Zhang, Y. (2016). A novel NF-κB/YY1/microRNA-10a regulatory circuit in fibroblast-like synoviocytes regulates inflammation in rheumatoid arthritis. Sci. Rep. 6, 20059.
Nozawa-Inoue, K., Harada, F., Magara, J., Ohazama, A., and Maeda, T. (2016). Contribution of synovial lining cells to synovial vascularization of the rat temporomandibular joint. J. Anat. 228, 520–529.
Orr, C., Vieira-Sousa, E., Boyle, D.L., Buch, M.H., Buckley, C.D., Cañete, J.D., Catrina, A.I., Choy, E.H.S., Emery, P., Fearon, U., Filer, A., Gerlag, D., Humby, F., Isaacs, J.D., Just, S.A., Lauwerys, B.R., Le Goff, B., Manzo, A., McGarry, T., McInnes, I.B., Najm, A., Pitzalis, C., Pratt, A., Smith, M., Tak, P.P., Thurlings, R., Fonseca, J.E., Veale, D.J., and Tas, S.W. (2017). Synovial tissue research: a state-of-the-art review. Nat. Rev. Rheumatol. 13, 463–475.
Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., and Lim, W.A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183.
Bucala, R., Ritchlin, C., Winchester, R., and Cerami, A. (1991). Constitutive production of inflammatory and mitogenic cytokines by rheumatoid synovial fibroblasts. J. Exp. Med. 173, 569–574.
Scott, B.B., Weisbrot, L.M., Greenwood, J.D., Bogoch, E.R., Paige, C.J., and Keystone, E.C. (1997). Rheumatoid arthritis synovial fibroblast and U937 macrophage/monocyte cell line interaction in cartilage degradation. Arthritis Rheum. 40, 490–498.
Scott, D.L., Wolfe, F., and Huizinga, T.W.J. (2010). Rheumatoid arthritis. Lancet 376, 1094–1108.
Sen, M., Reifert, J., Lauterbach, K., Wolf, V., Rubin, J.S., Corr, M., and Carson, D.A. (2002). Regulation of fibronectin and metalloproteinase expression by Wnt signaling in rheumatoid arthritis synoviocytes. Arthritis Rheum. 46, 2867–2877.
Shigeyama, Y., Pap, T., Kunzler, P., Simmen, B.R., Gay, R.E., and Gay, S. (2000). Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum. 43, 2523–2530.
Si, X., Zang, R., Zhang, E., Liu, Y., Shi, X., Zhang, E., Shao, L., Li, A., Yang, N., Han, X., Pan, B., Zhang, Z., Sun, L., and Sun, Y. (2016). LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK. Oncotarget 7, 81452–81462.
Silman, A.J., and Pearson, J.E. (2002). Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 4 Suppl 3, S265-272.
Smolen, J.S., Aletaha, D., Koeller, M., Weisman, M.H., and Emery, P. (2007). New therapies for treatment of rheumatoid arthritis. Lancet 370, 1861–1874.
Smolen, J.S., Aletaha, D., and McInnes, I.B. (2016). Rheumatoid arthritis. Lancet 388, 2023–2038.
Srirangan, S., and Choy, E.H. (2010). The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther. Adv. Musculoskelet Dis. 2, 247–256.
Stuhlmüller, B., Kunisch, E., Franz, J., Martinez-Gamboa, L., Hernandez, M.M., Pruss, A., Ulbrich, N., Erdmann, V.A., Burmester, G.R., and Kinne, R.W. (2003). Detection of oncofetal h19 RNA in rheumatoid arthritis synovial tissue. Am. J. Pathol. 163, 901–911.
Sweeney, S.E., and Firestein, G.S. (2004). Rheumatoid arthritis: regulation of synovial inflammation. Int. J. Biochem. Cell Biol. 36, 372–378.
Tanos, V., Ariel, I., Prus, D., De-Groot, N., and Hochberg, A. (2004). H19 and IGF2 gene expression in human normal, hyperplastic, and malignant endometrium. Int. J. Gynecol. Cancer 14, 521–525.
Tetta, C., Camussi, G., Modena, V., Di Vittorio, C., and Baglioni, C. (1990). Tumour necrosis factor in serum and synovial fluid of patients with active and severe rheumatoid arthritis. Ann. Rheum. Dis. 49, 665–667.
Tolboom, T.C., Zhang, Y.H., Henriquez, N.V., Nelissen, R.G., Toes, R.E., Noteborn, M.H., and Huizinga, T.W. (2006). Fibroblast-like synoviocytes from patients with rheumatoid arthritis are more sensitive to apoptosis induced by the viral protein, apoptin, than fibroblast-like synoviocytes from trauma patients. Clin. Exp. Rheumatol. 24, 142-147.
Trenkmann, M., Brock, M., Gay, R.E., Kolling, C., Speich, R., Michel, B.A., Gay, S., and Huber, L.C. (2011). Expression and function of EZH2 in synovial fibroblasts: epigenetic repression of the Wnt inhibitor SFRP1 in rheumatoid arthritis. Ann. Rheum. Dis. 70, 1482–1488.
Turner, J.D., and Filer, A. (2015). The role of the synovial fibroblast in rheumatoid arthritis pathogenesis. Curr. Opin. Rheumatol. 27, 175–182.
Varambally, S., Dhanasekaran, S.M., Zhou, M., Barrette, T.R., Kumar-Sinha, C., Sanda, M.G., Ghosh, D., Pienta, K.J., Sewalt, R.G.A.B., Otte, A.P., Rubin, M.A., and Chinnaiyan, A.M. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629.
Visvanathan, S., Rahman, M.U., Keystone, E., Genovese, M., Klareskog, L., Hsia, E., Mack, M., Buchanan, J., Elashoff, M., and Wagner, C. (2010). Association of serum markers with improvement in clinical response measures after treatment with golimumab in patients with active rheumatoid arthritis despite receiving methotrexate: results from the GO-FORWARD study. Arthritis Res. Ther. 12, R211.
Wang, C.-R., Chen, S.-Y., Wu, C.-L., Liu, M.-F., Jin, Y.-T., Chao, L., and Chao, J. (2005). Prophylactic adenovirus-mediated human kallistatin gene therapy suppresses rat arthritis by inhibiting angiogenesis and inflammation. Arthritis Rheum. 52, 1319-1324.
Wang, C.-R. and Liu, M.-F. (2003). Regulation of CCR5 expression and MIP-1α production in CD4+ T cells from patients with rheumatoid arthritis. Clin. Exp. Immunol. 132, 371–378.
Yamaguchi, H., and Hung, M.-C. (2014). Regulation and role of EZH2 in cancer. Cancer Res. Treat. 46, 209–222.
Yang, S., and Yang, Y. (2015). Downregulation of microRNA‑221 decreases migration and invasion in fibroblast‑like synoviocytes in rheumatoid arthritis. Mol. Med. Rep. 12, 2395–2401.
You, S., Koh, J.H., Leng, L., Kim, W.-U., and Bucala, R. (2018). The tumor-like phenotype of rheumatoid synovium: molecular profiling and prospects for precision medicine. Arthritis Rheumatol. 70, 637–652.
Zhang, D.-M., Lin, Z.-Y., Yang, Z.-H., Wang, Y.-Y., Wan, D., Zhong, J.-L., Zhuang, P.-L., Huang, Z.-Q., Zhou, B., and Chen, W.-L. (2017). IncRNA H19 promotes tongue squamous cell carcinoma progression through β-catenin/GSK3β/EMT signaling via association with EZH2. Am. J. Transl. Res. 9, 3474–3486.
Zhuo, C., Jiang, R., Lin, X., and Shao, M. (2016). LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget 8, 1429–1437.