簡易檢索 / 詳目顯示

研究生: 詹品禎
Chan, Pin-Chen
論文名稱: 有機質影響抗生素氧四環素在蝦養殖環境中殘留與分布之研究
The Residue Distribution and Accumulation of Oxytetracycline Antibiotics Influenced by Organic Matter in Shrimp Aquaculture
指導教授: 陳婉如
Chen, Wan-Ru
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 81
中文關鍵詞: 氧四環素蝦池有機碳
外文關鍵詞: Oxytetracycline, Shrimp, Shrimp farms, Organic carbon content
相關次數: 點閱:76下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣農漁養殖土地有限,大部分的經濟動物都採取集中方式飼養,然而高密度之飼養環境將提升疾病散播率,為預防大規模的疾病傳染,抗生素被廣泛利用於現今的農漁養殖,然其進入到生態系統中累積很可能會衍生出抗藥性問題,故其對環境造成的潛在危害近年來已逐漸受到重視。氧四環素(oxytetracycline, OTC)經常以低劑量添加於養蝦飼料中藉以預防或治療細菌感染並提升蝦子存活率,然而未被完全攝取之OTC很可能殘留於蝦池,甚至透過換水程序進入到自然界中,為一潛在的環境汙染源。本研究主旨為探討養蝦產業使用之OTC於不同環境基質(蝦池水、蝦池底泥、底泥孔隙水)、蝦組織(蝦肉、蝦內臟、蝦血)及飼料當中的殘留濃度,並瞭解OTC於蝦養殖環境中的分布情形,此外,已有文獻指出,有機物質對於有機汙染物於水土環境之濃度分配有著顯著的影響,故本研究也對蝦池水及底泥進行有機碳含量測定,探討有機質之存在是否會影響OTC在不同基質間的濃度。研究使用養蝦業者提供之蝦子、飼料及蝦池樣本進行分析,利用液相層析串聯質譜儀(LC-MS/MS)定量OTC濃度,並以總有機碳分析儀(TOC analyzer)檢測有機碳含量。
    研究結果發現,OTC可於蝦池水(3.91 ± 2.76 µg/L)、底泥(17.84 ± 12.34 µg/kg)、底泥孔隙水(7.72 ± 3.98 µg/L)、蝦肌肉(18.11 ± 15.37 µg/kg)、蝦內臟(109.58 ± 85.75 µg/kg)、飼料(28.5 ± 36.18 µg/kg)以及蝦血在兩種萃取液分別是(10.16 ± 14.2 µg/L MCI buffer)、(11.4 ± 18.5 µg/L citric acid-Na2HPO4 buffer),其中以蝦內臟之殘留濃度最高。比較OTC於不同基質間之分布,發現其在環境介質(池水、孔隙水、底泥)及飼料中的濃度並無和蝦體組織(肌肉、內臟、蝦血)中的含量呈現顯著關係,而蝦血中濃度與肌肉及內臟中的OTC殘留相關性亦不大。在有機質分析部分,池水之有機碳含量與底泥OTC濃度呈現略微負相關,即當水體有機質愈多時,底泥中的OTC含量會減少。

    Oxytetracycline (OTC), a commonly used antibiotic in shrimp culturing, is usually added in feed for the treatment of bacterial disease. The residual OTC in shrimp farms could be a potential source of environmental pollution. This study was aimed to understand the correlations of OTC concentration in different matrices, including pond environment (pond water, pond sediment and pore water), shrimp tissues (muscle, viscera and hemolymph) and feed. The influence of organic carbon contents on OTC residues in pond water/pore water/sediment samples were also evaluated. The extraction procedures of OTC from pond sediment and shrimp tissues (muscle, viscera and hemolymph) were developed and a liquid chromatography coupled with a tandem mass spectrometry (LC-MS/MS) was used to quantify the OTC concentration. A total organic carbon analyzer (TOC analyzer) was applied to analyze the total organic carbon content.
    OTC could be detected in pond water (3.91 ± 2.76 µg/L), pond sediment (17.84 ± 12.34 µg/kg), pore water (7.72 ± 3.98 µg/L) as well as shrimp muscle (18.11 ± 15.37 µg/kg), shrimp viscera (109.58 ± 85.75 µg/kg), shrimp feed (28.5 ± 36.18 µg/kg) and shrimp hemolymph in MCI buffer (10.16 ± 14.2 µg/L), shrimp hemolymph in citric acid-Na2HPO4 buffer (11.4 ± 18.5 µg/L). Comparing the residual OTC in varied matrices, no significant correlation was found among the pond environment (pond water, pond sediment and pore water) and shrimp tissues (muscle, viscera and hemolymph). The organic carbon content of pond water and OTC concentration in sediment, however, showed negative correlation, implying more organic substances existing in liquid phase may result in less OTC accumulation in pond sediment.

    摘要 I Abstract III 誌謝 V Table of content VII Figure index X Table index XII Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Shrimp farming in Taiwan 3 2.2 Oxytetracycline (OTC) 4 2.2.1 OTC residues in shrimp farms 5 2.2.2 OTC residues in shrimp muscle 6 2.2.3 OTC residues in shrimp viscera 7 2.2.4 OTC residues in shrimp hemolymph 9 2.3 Organic matter 11 2.3.1 Dissolved organic matter 11 2.3.2 Soil organic matter 12 Chapter 3 Material and Methods 14 3.1 Sampling 14 3.1.1 Shrimp farms 14 3.1.2 Shrimp samples 16 3.1.3 Shrimp Feeds 16 3.2 Chemicals 17 3.3 Extraction experiment 17 3.3.1 Pond water and sediment pore water 17 3.3.2 Sediment 17 3.3.3 Feed 20 3.3.4 Shrimp muscle 21 3.3.5 Shrimp viscera 23 3.3.6 Shrimp hemolymph 25 3.4 Analysis and instrument 33 3.4.1 HPLC/MS/MS detector 33 3.4.2 Total organic carbon 33 3.4.3 Excitation/Emission Matrix Spectrofluorometer (EEM) analysis 35 3.4.4 Statistical analysis 37 3.5 Mass balance 38 Chapter 4 Result and discussion 40 4.1 The factors affecting OTC residues in shrimp 40 4.1.1 OTC in shrimp body with environmental factors 40 4.1.2 OTC in shrimp body and shrimp feed 52 4.2The relationship between OTC residue and organic carbon content in different matrices 55 4.3 Shrimp hemolymph 61 4.4 Mass balance 66 4.5 EEM analysis result 71 Chapter 5 Conclusions and suggestion 73 5.1 Conclusions 73 5.2 Suggestions 75 Chapter 6 References 76

    Björklund, H. (1988). Determination of oxytetracycline in fish by high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 432, 381-387.
    Björklund, H., Bondestam, J., & Bylund, G. (1990). Residues of oxytetracycline in wild fish and sediments from fish farms. Aquaculture, 86(4), 359-367.
    Boxall, L Fogg, P A Blackwell, & Pemberton, P. K. a. E. J. (2002). Review of Veterinary Medicines in the Environment Environment Agency Bristol, UK.
    Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental microbiology, 8(7), 1137-1144.
    Carbajal-Hernández, J. J., Sánchez-Fernández, L. P., Villa-Vargas, L. A., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2013). Water quality assessment in shrimp culture using an analytical hierarchical process. Ecological Indicators, 29, 148-158. doi: https://doi.org/10.1016/j.ecolind.2012.12.017
    Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24), 5701-5710. doi: 10.1021/es034354c
    Chiayvareesajja, A. CHANDUMPAI, Y. THEAPPARAT, & FAROONGSARNG, D. (2006). The complete analysis of oxytetracycline pharmacokinetics in farmed Pacific white shrimp (Litopenaeus vannamei). Journal of Veterinary Pharmacology and Therapeutics.
    Danielsson, L. G. (1982). On the use of filters for distinguishing between dissolved and particulate fractions in natural waters. Water Res, 16(2), 179-182.
    EY.COA. (2014). 動物用藥殘留標準第三條修正條文.
    FAO. (1999). Aquaculture Production Statistics 1988-1997. Fisheries Circular.
    Flegel, T. W. (1997). Major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand. World Journal of Microbiology and Biotechnology, 13(4), 433-442.
    Furushita, M., Maeda, T., Akagi, H., Ohta, M., & Shiba, T. (2005). Analysis of plasmids that can transfer antibiotic resistance genes from fish farm bacteria to clinical bacteria. Paper presented at the Joint Meeting of the 3 Divisions of the International Union of Microbiological Societies 2005. International Congress of Bacteriology and Applied Microbiology, B-1162.
    Gómez-Jimenez, S., Espinosa-Plascencia, A., Valenzuela-Villa, F., & Bermúdez-Almada, M. d. C. (2008). Oxytetracycline (OTC) accumulation and elimination in hemolymph, muscle and hepatopancreas of white shrimp Litopenaeus vannamei following an OTC-feed therapeutic treatment. Aquaculture, 274(1), 24-29. doi: https://doi.org/10.1016/j.aquaculture.2007.11.017
    Henrik, R. M. S. N. (2000). Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere, 40(7), 715-722. doi: https://doi.org/10.1016/S0045-6535(99)00442-7
    Holmström, K., Gräslund, S., Wahlström, A., Poungshompoo, S., Bengtsson, B., & Kautsky, N. (2003). Antibiotic use in shrimp farming and implications for environmental impacts and human health. International journal of food science & technology, 38(3), 255-266.
    Jiao, S., Zheng, S., Yin, D., Wang, L., & Chen, L. (2008). Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process. Journal of Environmental Sciences, 20(7), 806-813.
    Kautsky, N., Rönnbäck, P., Tedengren, M., & Troell, M. (2000). Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture, 191(1–3), 145-161.
    Kerry, J., NicGabhainn, S., & Smith, P. (1997). Changes in oxytetracycline resistance of intestinal microflora following oral administration of this agent to Atlantic salmon (Salmo salar L.) smolts in a marine environment. Aquaculture, 157(3), 187-195.
    Kong, W. D., Zhu, Y. G., Liang, Y. C., Zhang, J., Smith, F. A., & Yang, M. (2007). Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environmental Pollution, 147(1), 187-193. doi: https://doi.org/10.1016/j.envpol.2006.08.016
    Kulshrestha, P., Giese, R. F., & Aga, D. S. (2004). Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environmental Science & Technology, 38(15), 4097-4105.
    Le, T. X., & Munekage, Y. (2004). Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. Mar Pollut Bull, 49(11), 922-929.
    Liao, I. C., Su, M. S., & Chang, C. F. (1992). Diseases of penaeus monodon in Taiwan: a review from 1977 to 1991. Diseases of cultured penaeid shrimp in Asia and the United States, 171, 113-137.
    Lightner, D. V., & Redman, R. M. (1998). Strategies for the Control of Viral Diseases of Shrimp in the Americas. Fish Pathology, 33(4), 165-180. doi: 10.3147/jsfp.33.165
    McIlvaine, T. C. (1921). A buffer solution for colorimetric comparison. Journal of Biological Chemistry, 49(1), 183-186.
    Mostofa, K. M. G., Liu, C.-q., Mottaleb, M. A., Wan, G., Ogawa, H., Vione, D., . . . Wu, F. (2013). Dissolved Organic Matter in Natural Waters. In K. M. G. Mostofa, T. Yoshioka, A. Mottaleb & D. Vione (Eds.), Photobiogeochemistry of Organic Matter: Principles and Practices in Water Environments (pp. 1-137). Berlin, Heidelberg: Springer Berlin Heidelberg.
    Nygaard, K., Lunestad, B. T., Hektoen, H., Berge, J. A., & Hormazabal, V. (1992). Resistance to oxytetracycline, oxolinic acid and furazolidone in bacteria from marine sediments. Aquaculture, 104(1), 31-36.
    Páez-Osuna, F. (2001). The environmental impact of shrimp aquaculture: a global perspective. Environmental Pollution, 112(2), 229-231.
    Phillips, M. J. (1995). Shrimp culture and the environment. SEAFDEC Asian Aquaculture, 11(1), 1-6.
    Rabølle, Mette, & Spliid, N. H. (2000). Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere, 40(7), 715-722.
    Reed, L. A., Siewicki, T. C., & Shah, J. C. (2006). The biopharmaceutics and oral bioavailability of two forms of oxytetracycline to the white shrimp, Litopenaeus setiferus. Aquaculture, 258(1–4), 42-54.
    Roque, A., Molina-Aja, A., Bolán-Mejı́a, C., & Gomez-Gil, B. (2001). In vitro susceptibility to 15 antibiotics of vibrios isolated from penaeid shrimps in Northwestern Mexico. International Journal of Antimicrobial Agents, 17(5), 383-387.
    Rosenberry, R. (1998). World Shrimp Farming., from http://www.shrimpnews.com/
    Samuelsen, O. B., Lunestad, B. T., Ervik, A., & Fjelde, S. (1994). Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. Aquaculture, 126(3), 283-290.
    Thakur, P. C., Corsin, F., Turnbull, J. F., Shankar, K. M., Hao, N. V., Padiyar, P. A., . . . Mohan, C. V. (2002). Estimation of prevalence of white spot syndrome virus (WSSV) by polymerase chain reaction in Penaeus monodon postlarvae at time of stocking in shrimp farms of Karnataka, India: a population-based study. Diseases of Aquatic Organisms, 49(3), 235-243.
    Udovičić, M., Baždarić, K., Bilić-Zulle, L., & Petrovečki, M. (2007). What we need to know when calculating the coefficient of correlation? Biochemia Medica, 17(1), 10-15.
    Uno, K., Aoki, T., Kleechaya, W., Tanasomwang, V., & Ruangpan, L. (2006). Pharmacokinetics of oxytetracycline in black tiger shrimp, Penaeus monodon, and the effect of cooking on the residues. Aquaculture, 254(1–4), 24-31.
    Uno, K., Chaweepack, T., & Ruangpan, L. (2010). Pharmacokinetics and bioavailability of oxytetracycline in vannamei shrimp (Penaeus vannamei) and the effect of processing on the residues in muscle and shell. Aquaculture International, 18(6), 1003-1015. doi: 10.1007/s10499-009-9318-7
    Wang, Jiangtao, Hu, J., & Zhang, S. (2010). Studies on the sorption of tetracycline onto clays and marine sediment from seawater. Journal of Colloid and Interface Science, 349(2), 578-582.
    Wang, Liu, Q., & Li, J. (2004). Tissue distribution and elimination of oxytetracycline in perch Lateolabras janopicus and black seabream (Sparus macrocephalus) following oral administration. Aquaculture, 237(1–4), 31-40. doi:
    Weifen, W., Lin, H., Xue, C., & Khalid, J. (2004). Elimination of chloramphenicol, sulphamethoxazole and oxytetracycline in shrimp, Penaeus chinensis following medicated-feed treatment. Environment International, 30(3), 367-373.
    Wyban, J., Walsh, W. A., & Godin, D. M. (1995). Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture, 138(1), 267-279.
    Xi, X., Wang, M., Chen, Y., Yu, S., Hong, Y., Ma, J., . . . Xu, X. (2015). Adaption of the microbial community to continuous exposures of multiple residual antibiotics in sediments from a salt-water aquacultural farm. Journal of Hazardous Materials, 290, 96-105.
    Zhao, C., Pelaez, M., Duan, X., Deng, H., O'Shea, K., Fatta-Kassinos, D., & Dionysiou, D. D. (2013). Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: Kinetics and mechanism studies. Applied Catalysis B: Environmental, 134, 83-92.
    Zheng, W.-l., Zhang, L.-f., Zhang, K.-y., Wang, X.-y., & Xue, F.-q. (2012). Determination of Tetracyclines and Their Epimers in Agricultural Soil Fertilized with Swine Manure by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. Journal of Integrative Agriculture, 11(7), 1189-1198.
    Rosenberry, R. (1998) World Shrimp Farming. Shrimp News International, San Diego
    Udovičić, M., Baždarić, K., Bilić-Zulle, L., & Petrovečki, M. (2007), What we need to know when calculating the coefficient of correlation? Biochemia Medica, 17(1), 10-15.

    下載圖示 校內:2022-07-01公開
    校外:2022-07-01公開
    QR CODE