| 研究生: |
余幸芳 Yu, Hsing-Fang |
|---|---|
| 論文名稱: |
十二烷基硫酸鈉與聚丙烯酸/聚(N-乙烯吡咯烷酮)氫鍵複合物之交互作用機制研究 Study of the Interaction Mechanism between Sodium Dodecyl Sulfate and the Hydrogen-Bonded Complex of Poly(acrylic acid) and Poly(N-vinylpyrrolidone) |
| 指導教授: |
侯聖澍
Hou, Sheng-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 聚丙烯酸 、聚乙烯吡咯烷酮 、十二烷基硫酸鈉 、複合物 |
| 外文關鍵詞: | poly(acrylic acid), poly(N-vinylpyrrolidone), sodium dodecyl sulfate, complex |
| 相關次數: | 點閱:135 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於水溶液中,聚丙烯酸(poly(acrylic acid),PAA)與聚乙烯吡咯烷酮(poly(N-vinylpyrrolidone),PVP)兩高分子間的氫鍵作用力使PAA與PVP形成具疏水性質的分子間複合物。本研究主要在PAA/PVP高分子混合溶液中加入陰離子型界面活性劑十二烷基硫酸鈉(sodium dodecyl sulfate,SDS),以探討SDS對PAA/PVP氫鍵複合作用的影響,並藉由螢光光譜、特徵黏度、穿透度、酸鹼度等資訊,詳細地分析PAA、PVP與SDS各種作用力之間的競合關係。
本研究分為兩個部分,第一個部分藉由PAA-(H)-PVP疏水性質探討PAA與PVP氫鍵配對之情形。從螢光光譜及毛細管黏度計的實驗結果得知,改變溶液酸鹼環境會影響PAA與PVP之間的氫鍵複合作用。在pH=6.5~8.5的環境下,PAA高分子鏈伸展舒張,較易與PVP配對形成PAA-(H)-PVP氫鍵複合物。當PAA/PVP高分子溶液呈現勻相狀態時,氫鍵複合物的生成並不影響整個系統的特徵黏度。藉由改變PAA與PVP濃度及重複單位莫耳比的結果,發現PVP的酮基(C=O)與PAA的羧酸(COOH)是以大於1:1的方式進行配對,且PAA-(H)-PVP氫鍵複合物的生成取決於PVP濃度之大小。
本研究的第二部份是在PAA/PVP高分子混合溶液中加入界面活性劑SDS,探討SDS對PAA-(H)-PVP氫鍵複合物的影響。由兩成分系統的結果得知,在pH=7.5~7.9的環境下,PAA-(H)-PVP氫鍵結合作用最強,故選擇於此操作條件下探討PAA/PVP/SDS系統,結果顯示三成分系統的[I1/I3]py值會隨著溶液中SDS含量的增加而上升,表示SDS會削弱PAA-(H)-PVP的疏水性質。PAA/PVP/SDS系統平原區間的[I1/I3]py值低於PVP/SDS系統。持續增加溶液中SDS的濃度,三成分系統的[I1/I3]py值傾向與PVP/SDS系統重合,表示SDS具有把PAA-(H)-PVP中的PAA與PVP相互分開的效果。此現象也與以pH=5.3~5.5為系統的結果相符。當pH=9.7~10.4時,由於PAA與PVP之間的氫鍵結合較弱,使PAA/PVP/SDS系統螢光光譜的整體趨勢與PVP/SDS系統相同。SDS受到帶高度負電的PAA影響,令三成分系統的[I1/I3]py值高於PVP/SDS系統。
The hydrogen interaction of the interpolymer hydrophobic complex were formed between poly(acrylic acid) and poly(N-vinylpyrrolidone) in aqueous solution. The effect of the sodium dodecyl sulfate on the complex of PAA and PVP had been characterized by by turbidimetric, fluorescent, specific viscosity, pH meter methods.
The study was divided into two sections. The first section had been studied the hydrogen interaction of PAA and PVP in aqueous solution by the hydrophobic characteristic. The effect of the pH on the complex were formed between PAA and PVP in aqueous solution. At the pH=6.5~8.5, the hydrogen complex were formed easy by the PAA polymer chain stretching. When the PAA-(H)-PVP hydrophobic complex solution were clear, it would not effect the viscosity of the system. When we changed the concentration and radio of PAA and PVP, then we could found that the ketone of PVP and the carboxylic acid of PAA were binded over 1. Furthermore the hydrogen complex would be decided by the concentration of PVP.
The second section had been studied that the effect of the sodium dodecyl sulfate on the hydrogen complex of PAA and PVP. The result of section one, we knowed that the complex would be the strongest when solution was pH=7.7~7.9. And the [I1/I3]py of the PAA/PVP/SDS system indicated that it was found to decrease the hydrophobic of the system with the increasing the concentration of SDS. The [I1/I3]py of the three components system in the plateau was lower than the system of PVP/SDS. If we increased the concentration of SDS again, the system of PAA/PVP/SDS and the system of the PVP/SDS would be overlap. Indicated that the PAA and PVP were isolated. And the phenomenon of the PAA/PVP/SDS system in pH=5.3~5.5 was the same. At the pH=9.9~10.3, the hydrogen bonding of PAA and PVP were weak. There were electrostatic repulsion between PAA and SDS, and then the [I1/I3]py of the PAA/PVP/SDS system was higher then PVP/SDS system.
[1] Khutoryanskiy, V. V.; Dubolazov, A. V.; Nurkeeva, Z. S.; Mun, G. A., Langmuir 2004, 20, 3785.
[2] Osada, Y., J. Polym. Sci., Polym. Chem. Ed. 1979, 17, 3485.
[3] Pradip; Maltesh, C.; Somasundaran, P.; Kulkarni, R. A.; Gundiah, S., Langmuir 1991, 7, 2108.
[4] Jin, S. P.; Liu, M. Z.; Chen, S. L.; Chen, Y., Eur. Polym. J. 2005, 41, 2406.
[5] Nurkeeva, Z. S.; Khutoryanskiy, V. V.; Mun, G. A.; Biktekenova, A. B.; Kadlubowski, S.; Shilina, Y. A.; Ulanski, P.; Rosiak, J. M., Colloids Surf., A 2004, 236, 141.
[6] Nurkeeva, Z. S.; Mun, G. A.; Khutoryanskiy, V. V.; Bitekenova, A. B.; Dubolazov, A. V.; Esirkegenova, S. Z., European Physical Journal E 2003, 10, 65.
[7] Saito, S., Colloid. Polym. Sci. 1982, 260, 613.
[8] Tadros, T. F., Introduction. Wiley-VCH Verlag GmbH & Co. KGaA: 2005; p 1.
[9] Meyers, D., Surfaces, interfaces, and colloids : principles and applications. VCH Publishers: New York, N.Y., 1991.
[10] Schick, M. J., J. Phys. Chem. 1964, 68, 3585.
[11] Tadros, T. F., Applied surfactants : Principles and applications. Wiley-VCH: Weinheim, 2005.
[12] Holmberg, K., Surfactants and polymers in aqueous solution. John Wiley & Sons: Hoboken, NJ, 2003.
[13] Desmond Goddard, E., Polymer/ Surfactant Interaction. In Principles of Polymer Science and Technology in Cosmetics and Personal Care, Informa Healthcare: 1999.
[14] Jones, M. N., J. Colloid Interface Sci. 1967, 23, 36.
[15] Schwuger, M. J., J. Colloid Interface Sci. 1973, 43, 491.
[16] Lange, H., Colloid. Polym. Sci. 1971, 243, 101.
[17] Arai, H.; Murata, M.; Shinoda, K., J. Colloid Interface Sci. 1971, 37, 223.
[18] Maltesh, C.; Somasundaran, P., Colloids Surf. 1992, 69, 167.
[19] Turro, N. J.; Baretz, B. H.; Kuo, P. L., Macromolecules 1984, 17, 1321.
[20] Yan, P.; Xiao, J.-X., Colloids Surf., A 2004, 244, 39.
[21] Goddard, E. D., Colloids Surf. 1986, 19, 255.
[22] Yuan, H. Z.; Luo, L.; Zhang, L.; Zhao, S.; Mao, S. Z.; Yu, J. Y.; Shen, L. F.; Du, Y. R., Colloid. Polym. Sci. 2002, 280, 479.
[23] Cabane, B., J. Phys. Chem. 1977, 81, 1639.
[24] Chari, K.; Antalek, B.; Lin, M. Y.; Sinha, S. K., J. Chem. Phys. 1994, 100, 5294.
[25] Gjerde, M. I.; Nerdal, W.; Høiland, H., J. Colloid Interface Sci. 1996, 183, 285.
[26] Gjerde, M. I.; Nerdal, W.; Høiland, H., J. Colloid Interface Sci. 1998, 197, 191.
[27] Roscigno, P.; Asaro, F.; Pellizer, G.; Ortona, O.; Paduano, L., Langmuir 2003, 19, 9638.
[28] Tzeng, J.-K.; Hou, S.-S., Macromolecules 2008, 41, 1281.
[29] Oosawa, F., Polyelectrolytes. M. Dekker: New York, 1971.
[30] Manning, G. S., J. Chem. Phys. 1969, 51, 924.
[31] Manning, G. S., J. Chem. Phys. 1969, 51, 934.
[32] Manning, G. S., J. Chem. Phys. 1969, 51, 3249.
[33] Manning, G. S., Biophys. Chem. 1977, 7, 95.
[34] Manning, G. S., Biophys. Chem. 1978, 9, 65.
[35] Manning, G. S., Acc. Chem. Res. 1979, 12, 443.
[36] O'Shaughnessy, B.; Yang, Q., Phys. Rev. Lett. 2005, 94, 048302.
[37] Aten, J. A. H. W., J. Chem. Phys. 1948, 16, 636.
[38] Markovitz, H.; Kimball, G. E., Journal of Colloid Science 1950, 5, 115.
[39] Flory, P. J.; Osterheld, J. E., J. Phys. Chem. 1954, 58, 653.
[40] Takahashi, A.; Nagasawa, M., J. Am. Chem. Soc. 1964, 86, 543.
[41] Noda, I.; Tsuge, T.; Nagasawa, M., J. Phys. Chem. 1970, 74, 710.
[42] Kay, P. J.; Treloar, F. E., Makromol. Chem. 1974, 175, 3207.
[43] Okamoto, H.; Wada, Y., J. Polym. Sci., Polym. Phys. Ed. 1974, 12, 2413.
[44] Staikos, G.; Bokias, G., Polym. Int. 1993, 31, 385.
[45] Bokias, G.; Staikos, G., Polymer 1995, 36, 2079.
[46] Dobrynin, A. V.; Colby, R. H.; Rubinstein, M., Macromolecules 1995, 28, 1859.
[47] Horkay, F.; Tasaki, I.; Basser, P. J., Biomacromolecules 2000, 1, 84.
[48] Anghel, D. F.; Toca-Herrera, J. L.; Winnik, F. M.; Rettig, W.; von Klitzing, R., Langmuir 2002, 18, 5600.
[49] Binana-Limbele, W.; Zana, R., Colloids Surf. 1986, 21, 483.
[50] Koetz, J.; Kosmella, S., Polyelectrolytes. In Polyelectrolytes and Nanoparticles, Springer Berlin Heidelberg: 2007; pp 5.
[51] Eliassaf, J., J. Appl. Polym. Sci. 1963, 7, S3.
[52] Barreiro-Iglesias, R.; Alvarez-Lorenzo, C.; Concheiro, A., Int. J. Pharm. 2003, 258, 179.
[53] Barreiro-Iglesias, R.; Alvarez-Lorenzo, C.; Concheiro, A., J. Controlled Release. 2001, 77, 59.
[54] Wang, C.; Tam, K. C., J. Phys. Chem., B 2005, 109, 5156.
[55] Wang, C.; Tam, K. C., J. Phys. Chem., B 2004, 108, 8976.
[56] Kiefer, J. J.; Somasundaran, P.; Ananthapadmanabhan, K. P., Langmuir 1993, 9, 1187.
[57] Fundin, J.; Hansson, P.; Brown, W.; Lidegran, I., Macromolecules 1997, 30, 1118.
[58] Bailey, F. E.; Lundberg, R. D.; Callard, R. W., J. Polym. Sci., Part A, Gen. Pap. 1964, 2, 845.
[59] Ikawa, T.; Abe, K.; Honda, K.; Tsuchida, E., J. Polym. Sci., Polym. Chem. Ed. 1975, 13, 1505.
[60] Callister, W. D., Materials science and engineering : an introduction. John Wiley & Sons: New York, 2007.
[61] Bard, A. J.; Faulkner, L. R., Electrochemical methods : fundamentals and applications. Wiley: New York, 2001.
[62] Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of instrumental analysis. Thomson Brooks/Cole: Belmont, CA, 2007.
[63] Winnik, F. M., Chem. Rev. 1993, 93, 587.
[64] Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Transport phenomena. J. Wiley: New York, 2002.
[65] de Gennes, P. G., Scaling concepts in polymer physics. Cornell University Press: Ithaca, N.Y., 1979.
[66] Price, G. J.; Ashokkumar, M.; Grieser, F., J. Phys. Chem., B 2003, 107, 14124.
[67] Miller, L. E.; Hamm, F. A., J. Phys. Chem. 1953, 57, 110.
[68] Levy, G. B.; Frank, H. P., J. Polym. Sci. 1955, 17, 247.
[69] Frank, H. P.; Levy, G. B., J. Polym. Sci. 1953, 10, 371.
[70] Elworthy, P. H.; Mysels, K. J., J. Colloid Interface Sci. 1966, 21, 331.
[71] Iliopoulos, I.; Wang, T. K.; Audebert, R., Langmuir 1991, 7, 617.
[72] Dutkiewicz; Jakubowska, Colloid. Polym. Sci. 2002, 280, 1009.
[73] Umlong, I. M.; Ismail, K., Colloids Surf., A 2007, 299, 8.
[74] Kalyanasundaram, K.; Thomas, J. K., J. Am. Chem. Soc. 1977, 99, 2039.