| 研究生: |
程珮儀 Cheng, Pei-Yi |
|---|---|
| 論文名稱: |
藉由空間侷限奈米流體引導蛋白質形成階層式結構 Hierarchical Protein Assembly Driven by Evaporative Spatially-Confined Nanofluids |
| 指導教授: |
李介仁
Li, Jie-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 第一型膠原蛋白 、自組裝 、空間侷限流體 、原子力顯微鏡 |
| 外文關鍵詞: | Protein, Self-assembly, Spatial confinement, Atomic force microscopy |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在大自然中,生物分子可由多個單體以自組裝的方式組成一個複雜的階層式結構。第一型膠原蛋白是眾多細胞外間質中含量最豐富的蛋白質,可在體內會呈現有方向性的排列並自組裝成階層式結構來做為細胞成長的支架。若能控制第一型膠原蛋白的自組裝並將其應用於仿生材料,這對於生醫工程的研究將會是一大突破。然而蛋白質自組裝是一個極為複雜的行為,許多因素都會影響到自組裝的過程,例如基材的表面特性、 pH值、離子的種類與離子強度等,因此在體外無法像體內一樣能夠精確的控制第
一型膠原蛋白的自組裝。
本實驗中我們利用空間侷限的方法使第一型膠原蛋白的自組裝發生在特定的空間中以形成奈米結構,再藉由原子力顯微鏡分析其自組裝後的細部結構。當第一型膠原蛋白溶液被侷限在特定空間中時,於蒸發過程中所產生的毛細作用力會引導第一型膠原蛋白排列成階層式結構,因此可藉由不同結構及形貌的模板來製作出具有複雜結構的第一型膠原蛋白奈米結構。除此之外,當侷限的空間越小時,第一型膠原蛋白的橫向交聯受到壓迫而無法自組裝成有方向性的纖維,透過調整空間侷限的大小能有效控制第一型膠原蛋白纖維的長度。本研究證實了利用空間侷限奈米流體的方法可以控制第一型膠原蛋白的自組裝,並製作出大面積且結構比原本結構還微小的奈米結構。
Biomolecules are capable of assembling into various hierarchical structures in nature. In particular, type I collagen is the most abundant extracellular matrix (ECM) protein, which can self-assemble into hierarchical scaffold with ordered fibrils for cell growth. Therefore, if the assembly process of type I collagen can be controllable, it is the key breakthrough to design new biomimetic materials for the biomedical applications. However, protein assembly is extremely complicated. Many factors, such as, surface properties, pH value, ion strength and ion species, affect the protein assembly process. As a result, controlling collagen assembly in vitro is not as precise as in vivo. In this research, we used the spatially-confined environment between designed templates and flat substrate to control the collagen assembly process and used AFM to analyze detailed structure. As the collagen solution is spatially-confined in the designed environment, the evaporation process further induces capillary flow to enhance collagen self-assembly, forming hierarchical structures. Different morphology of collagen micro- and nanostructures can be produced by using different templates. However, as the confined space becomes smaller, the lateral cross-linking of collagen molecules is limited, resulting in failure to assemble into fibril. The length of collagen fibril can be regulated by the dimension of spatially-confined environment. Our experiments demonstrate that protein self-assembly can be controlled by using spatially-confined nanofluids, and hierarchical protein structures which are smaller than templates can be produced on large-area substrates.
1. Brafman, D. A., Constructing stem cell microenvironments using bioengineering approaches. Physiological Genomics 2013, 45 (23), 1123-1135.
2. Hussey, G. S.; Dziki, J. L.; Badylak, S. F., Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater. 2018, 3, 159.
3. Kim, D.-H.; Provenzano, P. P.; Smith, C. L.; Levchenko, A., Matrix nanotopography as a regulator of cell function. J. Cell Biol. 2012, 197, 351−360.
4. Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K., Extracellular matrix structure. Adv. Drug Delivery Rev. 2016, 97, 4-27.
5. Ricard-Blum, S., The collagen family. Cold Spring Harbor Perspect. Biol. 2011, 3 (1), a004978−a004978.
6. Ricard-Blum, S.; Ruggiero, F.; van der Rest, M., The collagen superfamily. Collagen 2005, 35-84.
7. Kadler, K. E.; Baldock, C.; Bella, J.; Boot-Handford, R. P., Collagens at a glance. Journal of Cell Science 2007, 120 (12), 1955-1958.
8. Ricard-Blum, S.; Ruggiero, F., The collagen superfamily: From the extracellular matrix to the cell membrane. Pathol. Biol. 2005, 53 (7), 430-442.
9. Domene, C.; Jorgensen, C.; Abbasi, S. W., A perspective on structural an computationa work on collagen. Physical Chemistry Chemical Physics 2016, 18 (36), 24802-24811.
10. Singh, B.; Fleury, C.; Jalalvand, F.; Riesbeck, K., Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiology Reviews 2012, 36 (6), 1122-1180.
11. Fang, M.; Goldstein, E. L.; Turner, A. S.; Les, C. M.; Orr, B. G.; Fisher, G. J.; Welch,
K. B.; Rothman, E. D.; Banaszak Holl, M. M., Type I collagen D-spacing in fibril bundles of dermis, tendon, and bone: bridging between nano-and micro-level tissue hierarchy. ACS Nano 2012, 6 (11), 9503-9514.
12. Reznikov, N.; Bilton, M.; Lari, L.; Stevens, M. M.; Kroger, R. Fractal-Like Hierarchical Organization of Bone Begins at the Nanoscale. Science 2018, 360, No. eaao2189.
13. Mouw, J. K.; Ou, G.; Weaver, V. M., Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology 2014, 15 (12), 771.
14. Leow, W. W.; Hwang, W., Epitaxially guided assembly of collagen layers on mica surfaces. Langmuir 2011, 27 (17), 10907-10913.
15. Chen, C. H.; Hansma, H. G., Basement membrane macromolecules: insights from atomic force microscopy. Journal of Structural Biology 2000, 131 (1), 44-55.
16. Kruegel, J.; Miosge, N., Basement membrane components are key players in specialized extracellular matrices. Cellular and Molecular Life Sciences 2010, 67 (17), 2879-2895.
17. Raghu, K., Basement membranes: Structure, assembly and role in tumor angiogenesis. Nat Med 2003, 3, 442-433.
18. Coelho, N. M.; González-García, C.; Planell, J.; Salmerón-Sánchez, M.; Altankov, G., Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. Eur. Cell Mater. 2010, 19, 262-272.
19. Käpylä, E.; Sorkio, A.; Teymouri, S.; Lahtonen, K.; Vuori, L.; Valden, M.; Skottman, H.; Kellomäki, M.; Juuti-Uusitalo, K., Ormocomp-modified glass increases collagen binding and promotes the adherence and maturation of human embryonic stem cell derived retinal pigment epithelial cells. Langmuir 2014, 30 (48), 14555-14565.
20. Coelho, N. M.; Salmerón-Sánchez, M.; Altankov, G., Fibroblasts remodeling of type IV collagen at a biomaterials interface. Biomaterials Science 2013, 1 (5), 494-502.
21. Biswas, A.; Bayer, I. S.; Biris, A. S.; Wang, T.; Dervishi, E.; Faupel, F., Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Advances in Colloid and Interface Science 2012, 170 (1-2), 2-27.
22. Kim, S. M.; Suh, K. Y., Fabrication of biological arrays by unconventional lithographic methods. Frontiers in Bioscience 2009, 1, 406-419.
23. Hoff, J. D.; Cheng, L.-J.; Meyhöfer, E.; Guo, L. J.; Hunt, A. J., Nanoscale protein patterning by imprint lithography. Nano Letters 2004, 4 (5), 853-857.
24. Falconnet, D.; Pasqui, D.; Park, S.; Eckert, R.; Schift, H.; Gobrecht, J.; Barbucci, R.; Textor, M., A novel approach to produce protein nanopatterns by combining nanoimprint lithography and molecular self-assembly. Nano Letters 2004, 4 (10), 1909-1914.
25. Lee, K.-B.; Park, S.-J.; Mirkin, C. A.; Smith, J. C.; Mrksich, M., Protein nanoarrays generated by dip-pen nanolithography. Science 2002, 295 (5560), 1702-1705.
26. Garno, J. C.; Amro, N. A.; Wadu-Mesthrige, K.; Liu, G.-Y., Production of periodic arrays of protein nanostructures using particle lithography. Langmuir 2002, 18 (21), 8186-8192.
27. Lin, W.-f.; Swartz, L. A.; Li, J.-R.; Liu, Y.; Liu, G.-y., Particle lithography enables fabrication of multicomponent nanostructures. The Journal of Physical Chemistry C 2013, 117 (44), 23279-23285.
28. Kim, E.; Xia, Y.; Whitesides, G. M., Micromolding in capillaries: Applications in materials science. Journal of the American Chemical Society 1996, 118 (24), 5722-5731.
29. Valle, F.; Chelli, B.; Bianchi, M.; Greco, P.; Bystrenova, E.; Tonazzini, I.; Biscarini, F., Stable Non‐Covalent Large Area Patterning of Inert Teflon‐AF Surface: A New Approach to Multiscale Cell Guidance. Advanced Engineering Materials 2010, 12 (6), B185-B191.
30. Ricoult, S. b. G.; Sanati Nezhad, A.; Knapp-Mohammady, M.; Kennedy, T. E.; Juncker, D., Humidified microcontact printing of proteins: universal patterning of proteins on both low and high energy surfaces. Langmuir 2014, 30 (40), 12002-12010.
31. Tang, X.; Ali, M. Y.; Saif, M. T. A., A novel technique for micro-patterning proteins and cells on polyacrylamide gels. Soft matter 2012, 8 (27), 7197-7206.
32. Maver, U.; Velnar, T.; Gaberšček, M.; Planinšek, O.; Finšgar, M., Recent progressive use of atomic force microscopy in biomedical applications. TrAC Trends in Analytical Chemistry 2016, 80, 96-111.
33. How an atomic force microscope works. https://simple.wikipedia.org/wiki/Atomic_force_microscope#/media/File:AFMsetup.jpg.
34. GENERAL INTRODUCTION TO ATOMIC FORCE MICROSCOPY. http://www.iupui.edu/~bbml/afmintro.html.
35. The repulsive and attractive force regimes as the AFM tip approaches the sample. https://en.wikibooks.org/wiki/Nanotechnology/AFM#/media/File:AFM_contact_ICM_and_NCM.jpg
36. Yang, B.; Adams, D. J.; Marlow, M.; Zelzer, M., Surface-mediated supramolecular self-assembly of protein, peptide, and nucleoside derivatives: from surface design to the underlying mechanism and tailored functions. Langmuir 2018, 34 (50), 15109-15125.
37. Jiang, F.; Hörber, H.; Howard, J.; Müller, D. J., Assembly of collagen into microribbons: effects of pH and electrolytes. Journal of Structural Biology 2004, 148 (3), 268-278.
38. Wang, L.; Guo, Y.; Li, P.; Song, Y., Anion-specific effects on the assembly of collagen layers mediated by magnesium ion on mica surface. The Journal of Physical Chemistry B 2014, 118 (2), 511-518.
39. Cisneros, D. A.; Friedrichs, J.; Taubenberger, A.; Franz, C. M.; Muller, D. J., Creating ultrathin nanoscopic collagen matrices for biological and biotechnological applications. Small 2007, 3 (6), 956-963.
40. Shimizu, A.; Kawai, K.; Yanagino, M.; Wakiyama, T.; Machida, M.; Kameyama, K.; Naito, Z., Characteristics of type IV collagen unfolding under various pH conditions as a model of pathological disorder in tissue. Journal of Biochemistry 2007, 142 (1), 33-40.
41. Loo, R. W.; Goh, M. C., Potassium ion mediated collagen microfibril assembly on mica. Langmuir 2008, 24 (23), 13276-13278.
42. Kralchevsky, P. A.; Denkov, N. D., Capillary forces and structuring in layers of colloid particles. Current Opinion in Colloid & Interface Science 2001, 6 (4), 383-401.
43. Leroch, S.; Wendland, M., Influence of capillary bridge formation onto the silica nanoparticle interaction studied by grand canonical Monte Carlo simulations. Langmuir 2013, 29 (40), 12410-12420.
44. Narayanan, B.; Gilmer, G. H.; Tao, J.; De Yoreo, J. J.; Ciobanu, C. V., Self-assembly of collagen on flat surfaces: The interplay of collagen–collagen and collagen–substrate interactions. Langmuir 2014, 30 (5), 1343-1350.
45. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389 (6653), 827.
46. Kahraman, M.; Daggumati, P.; Kurtulus, O.; Seker, E.; Wachsmann-Hogiu, S., Fabrication and characterization of flexible and tunable plasmonic nanostructures. Scientific Reports 2013, 3, 3396.
47. Gentili, D.; Valle, F.; Albonetti, C.; Liscio, F.; Cavallini, M., Self-organization of functional materials in confinement. Accounts of Chemical Research 2014, 47 (8), 2692-2699.
48. Coelho, N. M.; González‐García, C.; Salmerón‐Sánchez, M.; Altankov, G., Arrangement of type IV collagen on NH2 and COOH functionalized surfaces. Biotechnology and Bioengineering 2011, 108 (12), 3009-3018.
49. Coelho, N. M.; González-García, C.; Salmerón-Sánchez, M.; Altankov, G., Arrangement of type IV collagen and laminin on substrates with controlled density of–OH groups. Tissue Engineering Part A 2011, 17 (17-18), 2245-2257.
50. Nugroho, R. W. N.; Harjumäki, R.; Zhang, X.; Lou, Y.-R.; Yliperttula, M.; Valle Delgado, J. J.; Österberg, M., Quantifying the interactions between biomimetic biomaterials–collagen I, collagen IV, laminin 521 and cellulose nanofibrils–by colloidal probe microscopy. Colloids and Surfaces B: Biointerfaces 2019, 173, 571-580.
51. Dupont-Gillain, C. C.; Pamula, E.; Denis, F.; De Cupere, V.; Dufrene, Y.; Rouxhet, P., Controlling the supramolecular organisation of adsorbed collagen layers. Journal of Materials Science: Materials in Medicine 2004, 15 (4), 347-353.
52. De-Liang, Y.; Fan-Xi, Z.; Ming, S.; Wen-Hua, G.; Li, L., Investigation on properties of collagen nanowires quasiepitaxially grown on mica lattice plane. Chinese Journal of Analytical Chemistry 2017, 45 (4), 465-470.
53. Fang, M.; Goldstein, E. L.; Matich, E. K.; Orr, B. G.; Banaszak Holl, M. M., Type I collagen self-assembly: the roles of substrate and concentration. Langmuir 2013, 29 (7), 2330-2338.