| 研究生: |
蘇韋綱 Su, Wei-Gang |
|---|---|
| 論文名稱: |
燃燒合成之氮化鋁粉體之微波燒結研究 A Study on Microwave Sintering of Combustion Synthesized Aluminum Nitride Powder. |
| 指導教授: |
鍾賢龍
Chung, Shian-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 氮化鋁 、微波燒結 |
| 外文關鍵詞: | AlN, microwave sintering |
| 相關次數: | 點閱:59 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用燃燒合成法合成之氮化鋁粉體,進行以多模腔體微波燒結氮化鋁基板可行性研究。藉由改進保溫裝置的設計,選擇適當的坩堝的材質與尺寸,並搭配輔助吸收微波材料,可有效的改善保溫效果並提升燒結溫度,成功地燒結出尺寸約2 × 2英吋見方、厚度小於1 mm且相對密度大於99 %的氮化鋁基板。接著利用上述的實驗裝置,探討不同粒徑與氧含量之氮化鋁粉體對其燒結試片熱傳導性質的影響,由實驗結果發現,粉體氧含量越低、粒徑越小,其燒結試片的熱傳導性質越好,另外可觀察到粉體氧含量對試片熱傳導影響的程度較粉體粒徑來的大。
The purpose of this paper is to study the multi-mode cavity microwave sintering of aluminum nitride based on combustion synthesis method. By improving the insulation device design, besides several crucible material and size adding some susceptor into insulation device which can effectively improve the thermal insulation effect and enhance the sintering temperature was tried in this experiment. Sintering products. 2x2 inches square with 1 mm thick, were successfully have more than 99% relative density of aluminum nitride plate. Oxygen content and different particle size of aluminum nitride powder will affect the thermal conductivity of sintered aluminum nitride. Based on the experiment result, much lower oxygen content and smaller particle size was used in the AlN powder resulting better of thermal conductivity. And if compared the samples which have higher oxygen content and smaller particle size with the samples which have lower oxygen content and bigger particle size, samples with smaller oxygen content and bigger particle size resulting higher thermal conductivity property. Thus, oxygen content is more effective affect in thermal conductivity of the sintered aluminum nitride.
1. Sheppard L. M. (1990). Ceram. Bull. 69: 1801.
2. Mussler B. H. (2000). Ceram. Bull. 79: 45.
3. Haussonne F. Jean-Marie. (1995). Materials and Manufacturing Processes 10(4): 717-755.
4. Selvaduray G. and L. Sheet. (1993). Mater. Sci. Technol. 9: 463.
5. Subrahmanyam J., and M. Vijayakumar. (1997). J. Mater. Sci. 27: 6249.
6. Lin C. N. and S. L. Chung. (2001). J. Mater. Res. 16: 2200.
7. Lin C. N. and S. L. Chung. (2001). J. Mater. Res. 16: 3518.
8. Lin C. N. and S. L. Chung. (2004). J. Mater. Res. 19: 3037.
9. Crider J. F. (1982). Ceram. Eng. Sci. Proc. 3: 519.
10. Kumar S. (1991). Key Engineering Materials 56: 183.
11. Merzhanov A. G. (1990). In Combustion and Plasma Synthesis of High-Temperature Materials., edited by Z. A. Munir, and J. B. Holt, VCH, New York, U.S.A. 1.
12. Selvaduray G. and L. Sheet. (1993). Mater. Sci. Technol. 9: 463.
13. Munir Z. A. (1988). Ceram. Bull. 67: 342.
14. 汪建民,(1994),陶瓷技術手冊,中華民國科技發展協進會。
15. 黃昌偉,陶瓷材料之熱性質分析,精密陶瓷特性及檢測分析,10,1,54。
16. Sander H. K. (1984). High-tech ceramics. C&E News July 9.
17. Kim W. J., D. K. Kim, and C. H. Kim. (1995). Journal of Materials Synthesis and Processing 3: 39.
18. Momeya K. and H. Inoue. (1969). Yogyo-Kyokai-Shi 77: 30.
19. German Randall M. (1985). Plenum Press: New York.
20. 謝承佑,(2002),碩士論文,台南,成功大學化學工程學系。
21. Watari K., H. J. Hwang, M. Toriyama, and S. Kanzaki. (1996). J. Am. Ceram. Soc. 79: 1979.
22. Harris J. H. (1998). JOM 56.
23. Watari K., Hae J. Hwang, Motohiro Toriyama, and Shuzo Kanzaki, J. (1999). Mater. Res. 14: 1409.
24. Komeya K., H. Inoue, and A.Tsuge. (1981). Yogyo-Kyokai-Shi 89: 330.
25. Kurokawa Y., K. Utsumi, and H. Takamizawa. (1988). J. Am. Ceram. Soc. 71: 588.
26. Lee R. (1991). J. Am. Ceram. Soc. 74: 2242.
27. Watari K., M. Kawamoto, and K. Ishizaki. (1991). J. Mater. Sci. 6: 4727.
28. Yan H., W. R. Cannon, and D. J. Shanefield. (1993). J. Am. Ceram. Soc. 76: 166.
29. Ichinose N. (1995). Mater. Chem. Phys. 42: 176.
30. Jackson T. B., A. V. Virkar, K. L. More, and R. B. Dinwiddie Jr. (1997). J. Am. Ceram. Soc. 80: 1421.
31. Terao R., J. Tatami, T. Meguro, and K. Komeya. (2002). J. Euro. Ceram. Soc. 22: 1051.
32. Xu X., H. Zhuang, W. Li, S. Xu, B. Zhang, and X. Fu. (2003). Mater. Sci. Eng. A342: 104.
33. Pezzotti G., A. Nakahira, and M. Tajika. (2000). J. Euro. Ceram. Soc. 20: 1319.
34. VanDamme N. S., S. M. Richard, and S. R. Winzer. (1989). J. Am. Ceram. Soc. 72: 1409.
35. Haase I., U. Schneider, and W. Winkler. (1993). Scientific Forum 70: 404.
36. Thostentson E. T. and T. W. Chou. (1999). Comp. A. 30: 1055.
37. Roussy G. and J. A. Pierce. (1980). Foundations and industrial applications of microwave and radio frequency fields. Wiely.
38. Collin R. E. (1966). Foundations for microwave engineering. McGraw Hill.
39. Risman P. O., T. Ohlsson, and B. Wass. (1987). J. Microwave power and electromagnetic energy 22: 193.
40. Tran V. N. (1991). Proceedings of the symposium during 93rd annual meeting of American Ceramic Society 683.
41. Janney M. A., C. L. Calhoun, and H. D. Kimrey. (1992). J. Am. Ceram. Soc. 75: 314.
42. Mizuno M., S. Obata, S. Takayama, S. Ito, N. Kato, T. Hirai, and M.Sato. (2004). J. Euro. Ceram. Soc. 24: 387.
43. Mijovic J. and J. Wijaya. (1990). Polym. Comp. 11: 184.
44. 劉岐山,(1990),微波能應用,電子工業出版社。
45. Clark D. E. (1993). Ceram. Eng. Soc. Proc. 14: 3.
46. 汪建民,(1994),陶瓷技術手冊,中華民國科技發展協進會。
47. Janny M. A. and H. D. Kimrey. (1991). Mater. Res. Soc. Proc. 189: 215.
48. Lewis D. A. (1992). Mater. Res. Soc. Proc. 269: 21.
49. Janny A., C. L. Calhoun, and H. D. Kimrey. (1991). Ceram. Trans. 21: 311.
50. Janny A. and H. D. Kimrey. (1988). Ceramic Powder Science. vol. II, American ceramic Society 919.
51. Fathi Z., I. Ahmed J. H. Simmons, D. E. Clark, and A. R. Loding. (1991). Ceram. Trans. 21: 623.
52. Brooske J. H., R. F. Cooper, I. Dobson, and L. McCaubhan. (1991). Ceram. Trans. 21: 185.
53. Freeman S., J. H. Booske, R. F. Cooper, B. Meng, J. Kieffer, and B. J. Reardon. (1993). Proceedings of the workshop on microwave-absorbing materials for accelerators. Newport News.
54. Wang J., J. Binner, B. Vaidhyanathan, N. Joomun, J. Kilner, G. Dimitrakis, and T. E. Cross. (2006). J. Am. Ceram. Soc. 89(6): 1977-1984.
55. Ramesh P. D., D. Brandon, and L. Schachter. (1999). Mater. Sci. Eng. A266: 211-220.
56. Goldstein A., W. D. Kaplan, and A. Singurindi. (2002). J. Euro. Ceram. Soc. 22: 1891-1896.
57. Xu G., Tayo Olorunyolemi, Yuval Carmel, Isabel K. Lioyd, and Otto C. Wilson Jr. (2003). J. Am. Ceram. Soc. 86(12): 2082-2086.
58. Dunscombe P. B. (1986). Med. Phys. 13: 457.
59. Olmstead E. (1997). Int. J. Heat Mass Transfer 40: 1559.
60. Xu G., T. Olorunyolemi, Y. Carmel, I. K. Lioyd, and O. C. Wilson Jr. (2002). J. Mater. Res. 17: 2837-2845.
61. Holcombe C. E. and N. L. Dykes. (1990). Journal of Materials Science Letters 9(4): 425-428.
62. Zhao C., J. Vleugels, et al. (2000). Acta Materialia 48(14): 3795-3801.
63. Vaidhyanathan B. and K. J. Rao. (1997). J. Mater. Res. 12: 3225-3229.
64. 謝承佑,(2006),博士論文,台南:成功大學化學工程學系。
65. Roth Robert S., Taki Negas, and Lawrence P. Cook. Phase Diagram for Ceramists. Volume IV, Columbus, Ohio, U.S.A., The American Ceramic Society.
66. Yagi T., K. Shinozaki, M. Kato, Y. Sawada, and N. Mizutani. (1990). J. Ceram. Soc. Jap. 98: 198.
67. Nakano H., K. Watari, and K. Urabe. (2003). Journal of the European Ceramic Society 23(10): 1761-1768.
68. Virkar A. V., T. B. Jackson, and R. A. Culter. (1989). J. Am. Ceram. Soc. 72: 2031.
69. Slack G. A., R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande. (1987). J. Phys. Chem. Solids 48: 641.
70. Kasori M. and F. Ueno. (1995). Journal of the European Ceramic Society 15(5): 435-443.
71. 黃育賢,(2008),碩士論文,台南:成功大學化學工程學系。
72. 蔡宗益,(2009),碩士論文,台南:成功大學化學工程學系。
校內:2012-08-31公開