| 研究生: |
莫普淳 Mo, Pu-Chun |
|---|---|
| 論文名稱: |
機械手臂介入對改善中風病患上肢動作與日常生活表現功能之療效:隨機控制型研究 Effects of Robot-Assisted Training on the Improvement of the Upper Limb Motor and Activity of Daily Living functions in Patients with Stroke: a Randomized Block Design Study |
| 指導教授: |
郭立杰
Kuo, Li-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 職能治療學系 Department of Occupational Therapy |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 機械手臂 、職能治療 、動作分析 |
| 外文關鍵詞: | Robot-assisted Training, Occupational Therapy, Motion Analysis |
| 相關次數: | 點閱:122 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景及目的:中風為一常見的中樞神經受損疾病,而多數中風病人都飽受上肢感覺動作功能受限所苦,進而導致日常生活功能受限。在眾多針對中風病人的療法中,利用機械手臂協助誘發動作,並透過反覆練習來協助個案恢復上肢功能是近年興起的治療手法。目前文獻中並無充足之證據顯示機械手臂療法比起傳統職能治療手法更能將治療成果轉移至一般生活功能表現上,因此本研究主旨為探討新型的機械手臂Armeo®Spring是否能比傳統職能治療手法更有效地改善個案上肢動作功能與動作品質,並能將治療成效轉移至日常生活功能表現中。
研究方法:本研究共招募14位中風個案作為研究對象,利用方便取樣的方法,受測者透過成功大學附設醫院復健部職能治療組轉介,分組方法為隨機分組,個案抽籤後後分配至兩組,其中9人為實驗組(機械手臂Armeo®Spring介入組)、9人為控制組(傳統職能治療介入),每位個案每次介入一小時,一週二至三次,共計12次,並在介入前、介入後進行評估,評估內容有: Fugl-Meyer Motor Assessment score UE part、Barthel Index、Manual Ability Measure、上肢伸手取物(reaching)動作分析,其中動作分析所使用的參數有動作時間(movement time)、動作單位(movement unit)、運動軌跡平滑度(path ratio)、手臂-軀幹協調性(Arm-Trunk coordination)等,並且共施測九個個位置,水平以身體中線、左右肩峰為水平三個位置,高度則以手平舉、上下30度作為三個高度標準。
研究結果:針對動作能力的Fugl-Meyer Motor Assessment score UE part機械手臂組在介入前後的比較中有出現顯著進步 (p = 0.008),但在日常生活量表中的Barthel Index、Manual Ability Measure皆沒有出現顯著差異,而機械手臂組與傳統職能治療組在以上三個量表中之間也沒有出現顯著差異。運動學參數中,僅有健側標準化手臂-軀幹協調(Arm-Trunk Coordination normalized through unaffected-side)中在與傳統職能治療組中後測組間比較時多數參數與位置沒有出現顯著差異,僅在ΔNATC的部分出現顯著差異(p = 0.03)、NMTd有出現顯著差異(p = 0.05)。本研究認為機械手臂能夠協助中風病人恢復上肢動作功能,但在12小時四週的治療量中仍無法將進步轉移到日常生活功能中,且在伸手取物的動作品質中,儘管都有小幅進步,但仍無法有顯著的差異,因此本研究認為臨床上透過新型機械手臂Armeo®Spring能夠協助中風個案恢復上肢功能,但仍需要更長的治療時間以及更頻繁的介入次數。
Robot-assisted training (RT) is a new strategy which provides to improve stroke patient’s motor functions in the upper extremity (UE). Although some evidences demonstrate that RT could improve UE motor functions, most RT interventions are designed for training the limb movement abilities only without emphasis on the training for ADL functions. To complement this insufficiency, Armeo®Spring is an innovative design which is combined the robotic mechanism with a visual interaction interface. Moreover, to evaluate more detailed and objective information for movement improvements, kinematic parameters were measured by a motion capture system. In this study, the randomized control trial with blocked design was used to compare the performances between RT group and convention OT group (CT group). Eighteen chronic stroke patients, nine in the RT group and nine in the CT group, were recruited in this study. All subjects received the intervention for one hour in every session, 2~3 sessions per week. A complete intervention lasted 4~6 weeks. Researchers evaluated the subject’s performances two times, pre- and post- intervention, during the studying period. The apparatuses and parameters such as Fugl-Myer motion assessment UE part (FMA), Bathel Index (BI), Manual Ability Measure (MAM) and parameters of kinematics, e.g. movement time, movement unit, path ratio and arm-trunk coordination, were used in the experiment. The results showed the FMA in the RT group had significant improvement but not in the CT group. In addition, the results of the BI and MAM did not find the significant difference between pre- and post-intervention in both groups. Most kinematic parameters did not find the significant improvement after intervention. In conclusions, this study showed that the robot-assisted training helps stroke patients improve their UE motor function after receiving a12-hours intervention. In the future, a larger sample size and longer follow-up study should be considered and carried out for establishing more concrete evidence.
Adams, H. P. (2007). Principles of Cerebrovascular Disease: McGraw-Hill Education.
Aisen, M. L., Krebs, H. I., Hogan, N., McDowell, F., & Volpe, B. T. (1997). The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Archives of Neurology, 54(4), 443-446.
Cai, L. L.-L. (2006). Robotics training algorithms for optimizing motor learning in spinal cord injured subjects. California Institute of Technology.
Carod-Artal, J., Egido, J. A., González, J. L., & De Seijas, E. V. (2000). Quality of life among stroke survivors evaluated 1 year after stroke experience of a stroke unit. Stroke, 31(12), 2995-3000.
Chan, C. C., & Lee, T. (1997). Validity of the Canadian occupational performance measure. Occupational Therapy International, 4(3), 231-249.
Chen, C., Granger, C., Peimer, C., Moy, O., & Wald, S. (2005). Manual Ability Measure (MAM-16): a preliminary report on a new patient-centred and task-oriented outcome measure of hand function. The Journal of Hand Surgery: British & European Volume, 30(2), 207-216.
Colomer, C., Baldovi, A., Torrome, S., Navarro, M., Moliner, B., Ferri, J., & Noe, E. (2013). Efficacy of Armeo®Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis. Neurología (English Edition), 28(5), 261-267.
Centers for Disease Control and Prevention. (2012). Prevalence of stroke--United States, 2006-2010. MMWR. Morbidity and mortality weekly report, 61(20), 379.
Coscia, M., Cheung, V. C., Tropea, P., Koenig, A., Monaco, V., Bennis, C., Micera, S., Bonato, P. (2014). The effect of arm weight support on upper limb muscle synergies during reaching movements. Stroke, 13(14), 32-34.
Cup, E., op Reimer, W. S., Thijssen, M., & van Kuyk-Minis, M. (2003). Reliability and validity of the Canadian Occupational Performance Measure in stroke patients. Clinical rehabilitation, 17(4), 402-409.
Dedding, C., Cardol, M., Eyssen, I. C., & Beelen, A. (2004). Validity of the Canadian Occupational Performance Measure: a client-centred outcome measurement. Clinical rehabilitation, 18(6), 660-667.
Dick, J., Guiloff, R., Stewart, A., Blackstock, J., Bielawska, C., Paul, E., & Marsden, C. (1984). Mini-mental state examination in neurological patients. Journal of Neurology, Neurosurgery & Psychiatry, 47(5), 496-499.
Dietz, V., Nef, T., & Rymer, W. Z. (2011). Neurorehabilitation Technology: Springer.
Duncan, P. W., Propst, M., & Nelson, S. G. (1983). Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Physical therapy, 63(10), 1606-1610.
Duret, C., & Hutin, E. (2013). Effects of prolonged robot-assisted training on upper limb motor recovery in subacute stroke. NeuroRehabilitation, 33(1), 41-48.
Eyssen, I., Beelen, A., Dedding, C., Cardol, M., & Dekker, J. (2005). The reproducibility of the Canadian occupational performance measure. Clinical rehabilitation, 19(8), 888-894.
Fugl-Meyer, A. R., Jääskö, L., Leyman, I., Olsson, S., & Steglind, S. (1974). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian journal of rehabilitation medicine, 7(1), 13-31.
Gladstone, D. J., Danells, C. J., & Black, S. E. (2002). The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabilitation and neural repair, 16(3), 232-240.
Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Borden, W. B., Bravata, D. M., Dai, S., Ford, E. S., Fox, C. S. (2013). Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation, 127(1), e6.
Hafsteinsdóttir, T., Algra, A., Kappelle, L., & Grypdonck, M. (2005). Neurodevelopmental treatment after stroke: a comparative study. Journal of Neurology, Neurosurgery & Psychiatry, 76(6), 788-792.
Hsieh, C.-L., Hsueh, I.-P., Chiang, F.-M., & Lin, P.-H. (1998). Inter-rater reliability and validity of the action research arm test in stroke patients. Age and ageing, 27(2), 107-113.
Hsieh, Y. W., Wu, C. Y., Liao, W. W., Lin, K. C., Wu, K. Y., & Lee, C. Y. (2011). Effects of Treatment Intensity in Upper Limb Robot-Assisted Therapy for Chronic Stroke A Pilot Randomized Controlled Trial. Neurorehabilitation and neural repair, 25(6), 503-511.
Kim, P., Warren, S., Madill, H., & Hadley, M. (1999). Quality of life of stroke survivors. Quality of Life Research, 8(4), 293-301.
Kunkel, A., Kopp, B., Müller, G., Villringer, K., Villringer, A., Taub, E., & Flor, H. (1999). Constraint-induced movement therapy for motor recovery in chronic stroke patients. Archives of physical medicine and rehabilitation, 80(6), 624-628.
Kwakkel, G., Wagenaar, R. C., Twisk, J. W., Lankhorst, G. J., & Koetsier, J. C. (1999). Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. The Lancet, 354(9174), 191-196.
Lang, C. E., Wagner, J. M., Dromerick, A. W., & Edwards, D. F. (2006). Measurement of upper-extremity function early after stroke: properties of the action research arm test. Archives of physical medicine and rehabilitation, 87(12), 1605-1610.
Liao, W. W., Wu, C. Y., Hsieh, Y. W., Lin, K. C., & Chang, W. Y. (2012). Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clinical rehabilitation, 26(2), 111-120.
Liepert, J., Miltner, W., Bauder, H., Sommer, M., Dettmers, C., Taub, E., & Weiller, C. (1998). Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neuroscience letters, 250(1), 5-8.
Lo, A. C., Guarino, P., Krebs, H. I., Volpe, B. T., Bever, C. T., Duncan, P. W., Ringer, R. J., Wagner, T. H., Richards, L. G., Bravata, D. M. (2009). Multicenter randomized trial of robot-assisted rehabilitation for chronic stroke: methods and entry characteristics for VA ROBOTICS. Neurorehabilitation and neural repair.
Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg, G. F., Federman, D. G., Ringer, R. J., Wagner, T. H., Krebs, H. I., Volpe, B. T. (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19), 1772-1783.
Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M., & Van der Loos, M. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of physical medicine and rehabilitation, 83(7), 952-959.
Magill, R. A. (2007). Motor Learning and Control: Concepts and Applications: McGraw-Hill.
Massie, C. L., Malcolm, M. P., Greene, D. P., & Browning, R. C. (2012). Kinematic motion analysis and muscle activation patterns of continuous reaching in survivors of stroke. Journal of motor behavior, 44(3), 213-222.
Mathiowetz, V., Volland, G., Kashman, N., & Weber, K. (1985). Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther, 39(6), 386-391.
Mazzoleni, S., Sale, P., Franceschini, M., Bigazzi, S., Carrozza, M. C., Dario, P., & Posteraro, F. (2013). Effects of proximal and distal robot-assisted upper limb rehabilitation on chronic stroke recovery. NeuroRehabilitation, 33(1), 33-39.
Mehrholz, J., Hädrich, A., Platz, T., Kugler, J., & Pohl, M. (2012). Electromechanical and Robot-Assisted Arm Training After Stroke Updated Review. Stroke, 43(12), e172-e173.
Mehrholz, J., Platz, T., Kugler, J., & Pohl, M. (2008). Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst Rev, 4(4).
Mehrholz, J., Platz, T., Kugler, J., & Pohl, M. (2009). Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Stroke, 40(5), e392-e393.
Levin M. F., Michaeksen S.M., Cirstea C. M., Roby-Brami A. (2002) Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Experimental Brain Research, 143, 171-180.
Murphy, M. A., Willén, C., & Sunnerhagen, K. S. (2011). Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehabilitation and neural repair, 25(1), 71-80.
Natarajan, P., Oelschlager, A., Agah, A., Pohl, P. S., Ahmad, S. O., & Liu, W. (2008). Current clinical practices in stroke rehabilitation: regional pilot survey. J Rehabil Res Dev, 45(6), 841-850.
Nijland, R., van Wegen, E., Verbunt, J., van Wijk, R., van Kordelaar, J., & Kwakkel, G. (2010). A comparison of two validated tests for upper limb function after stroke: The Wolf Motor Function Test and the Action Research Arm Test. Journal of Rehabilitation Medicine, 42(7), 694-696.
O'connor, D., Pollitt, P., Hyde, J., Fellows, J., Miller, N., Brook, C., & Reiss, B. (1989). The reliability and validity of the Mini-Mental State in a British community survey. Journal of psychiatric research, 23(1), 87-96.
Petrea, R. E., Beiser, A. S., Seshadri, S., Kelly-Hayes, M., Kase, C. S., & Wolf, P. A. (2009). Gender differences in stroke incidence and poststroke disability in the Framingham heart study. Stroke, 40(4), 1032-1037.
Phipps, S., & Richardson, P. (2007). Occupational therapy outcomes for clients with traumatic brain injury and stroke using the Canadian Occupational Performance Measure. American Journal of Occupational Therapy, 61(3), 328-334.
Rabadi, M. H., & Rabadi, F. M. (2006). Comparison of the action research arm test and the Fugl-Meyer assessment as measures of upper-extremity motor weakness after stroke. Archives of physical medicine and rehabilitation, 87(7), 962-966.
Sütbeyaz, S., Yavuzer, G., Sezer, N., & Koseoglu, B. F. (2007). Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 88(5), 555-559.
Sanford, J., Moreland, J., Swanson, L. R., Stratford, P. W., & Gowland, C. (1993). Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Physical therapy, 73(7), 447-454.
Stienen, A. H., Hekman, E. E., Van der Helm, F. C., Prange, G. B., Jannink, M. J., Aalsma, A. M., & Van der Kooij, H. (2007). Freebal: dedicated gravity compensation for the upper extremities. Paper presented at the Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on.
Sukal, T. M., Ellis, M. D., & Dewald, J. P. (2007). Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Experimental brain research, 183(2), 215-223.
Thieme, H., Mehrholz, J., Pohl, M., Behrens, J., & Dohle, C. (2013). Mirror therapy for improving motor function after stroke. Stroke, 44(1), e1-e2.
van der Lee, J. H., Beckerman, H., Lankhorst, G. J., & Bouter, L. M. (2001). The responsiveness of the Action Research Arm test and the Fugl-Meyer Assessment scale in chronic stroke patients. Journal of Rehabilitation Medicine, 33(3), 110-113.
Van der Lee, J. H., de Groot, V., Beckerman, H., Wagenaar, R. C., Lankhorst, G. J., & Bouter, L. M. (2001). The intra-and interrater reliability of the action research arm test: a practical test of upper extremity function in patients with stroke. Archives of physical medicine and rehabilitation, 82(1), 14-19.
Vandenberghe, A., Levin, O., De Schutter, J., Swinnen, S., & Jonkers, I. (2010). Three-dimensional reaching tasks: effect of reaching height and width on upper limb kinematics and muscle activity. Gait Posture, 32(4), 500-507.
Wolf, S. L., Winstein, C. J., Miller, J. P., Taub, E., Uswatte, G., Morris, D., . . . investigators, E. (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. Jama, 296(17), 2095-2104.
Wressle, E., Samuelsson, K., & Henriksson, C. (1999). Responsiveness of the Swedish version of the Canadian occupational performance measure. Scandinavian Journal of Occupational Therapy, 6(2), 84-89.
Yavuzer, G., Selles, R., Sezer, N., Sütbeyaz, S., Bussmann, J. B., Köseoğlu, F., . . . Stam, H. J. (2008). Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 89(3), 393-398.