簡易檢索 / 詳目顯示

研究生: 廖如樺
Liao, Ru-Hua
論文名稱: 熱原性鏈球菌蛋白酶之不同基因形式及其突變株之酵素活性分析
Analysis of the Protease Activity of Mutant and Allelic forms of Streptococcal Cysteine Protease
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 82
中文關鍵詞: 多型性化膿性鏈球菌外毒素B定點突變
外文關鍵詞: site-directed mutagenesis, polymerphism, Streptococcal pyrogenic exotoxin B
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱原性鏈球菌外毒素B (Streptococcal pyrogenic exotoxin B, 簡稱SPE B),它是由化膿性鏈球菌 (Streptococcal pyogenes) 所產生的一種細胞外毒素,根據其催化區的分類,SPE B是屬於一種半光胺酸的蛋白酶 (cysteine protease) 。SPE B是以40kDa的酶原 (Zymogen, ProSPE B) 形式被鏈球菌分泌至細胞外,之後會經由自動催化 (autocatalysis) 或由其他蛋白酶活化形成28kDa具有活性的蛋白酶。過去對於SPE B的研究中指出SPE B對於化膿性鏈球菌在感染宿主時的佔了很重要的角色,它不僅可以分解細胞間質的主成分fibrinectin及vitronectin且作用於interleukin-1β (IL-1β) precuror使其產生活化型的IL-1β而加重發炎反應,並誘導吞噬細胞進行apoptosis及造成其吞噬能力的下降,故SPE B被認為化膿性鏈球菌的重要毒性因子。過去有研究發現在SPE B的活化中心具有兩種胺基酸分別是半光氨酸(Cysteine)和精氨酸 (Histidine) 且其受質具有特異性,為了更深入了解SPE B酵素催化的反應機制,我們利用定點突變的方法構築兩種突變株,Q162N (推測和自動催化機制有關) 和W359A (推測為受質結合殘基),另外我們在比對兩百多種的SPE B胺基酸序列時發現SPE B在化膿性鏈球菌中具有多型性,而為了解這些多型性的SPE B在化膿性鏈球菌感染宿主過程中所扮演的角色,我們同樣利用定點突變方法構築T137I、D154N、G308S、G308S/A317S、G384D五種突變株,在純化的過程中發現其會自動催化成活化態也就是28kDa的形式,因此我們在純化的過程中加入 2mM氯化汞 (HgCl2)以維持其酶原的形式和抑制其活性。Q162N和W359A皆具有很弱的酵素活性顯示這些胺基酸對於催化的活性是非常重要的。在利用SPE B切割其突變株蛋白C192S時會有八種中間物質,而在Q162N和W359A這兩種突變蛋白其切割C192S只有產生三種中間物,顯示他們也可能參與受質的結合。而在多型性突變株方面,利用特異性受質C192S切割受質的速率如下: pro-SPE B > T137I > G308S > G308S/A317S > D154N > G384D ,他們在切割C192S時的中間物質和SPE B是相似的,表示大部分多型性的SPE B是影響酵素活性而不是改變其受質特異性。只除了G384D,在G384D切割C192S的結果,我們可以看到其似乎沒有太多的中間物,至於是什麼樣的原因造成它的受質特異性改變,目前還不清楚。另外在非特異性的受質偶氮酪蛋白(azocasein)中,實驗結果也顯示多型性SPE B突變株蛋白酵素活性皆比pro-SPE B差。以上結果顯示Q162和W359在催化活性和受質結合扮演重要的角色並可知道由M1型化膿性鏈球菌所分泌的SPE B具有最高的酵素活性。由以上研究讓我們了解到SPE B的分子作用機制和其多型性對其生物功能上影響。

    Streptococcal pyrogenic exotoxin B (SPE B) is an extracellular cysteine protease which is secreted by streptococcus pyogenes. SPE B is initially expressed as a 40 kDa zymogen (ProSPE B), and subsequently converted to a 28 kDa active protease (SPE B) by autocatalysis or proteolysis. SPE B also participates in the dissemination, colonization, and invasion of bacteria and the inhibition of wound healing. Since SPE B participates in host-pathogen interactions and is an important virulence factor, it makes it as an attractive therapeutic target. The last decade has witnessed a remarkable change in the epidemiology of group A streptococcal infections. However, there was little basis for understanding the genetic variation in population structure occurring in connection with temporal changes in the frequency or character of streptococcal diseases, such as invasive infections or rheumatic fever outbreaks. In order to investigate the allelic polymorphism and enzyme mechanism of SPE B, seven SPE B mutants have been expressed in E. coli and purified to homogeneity. During the processing of purification, we used 2mM HgCl2 as an inhibitor to obtain the 42kDa zymogen form. Mutants Q162N and W359A nearly lost their protease activity, implicating that these residues are essential for the catalytic activity. It has been shown that digestion of the pro-SPE B C192S mutant by SPE B produced eight intermediates. In contrast, the pro-SPE B C192S mutant cleaved by mutants W359A and Q162N only produced three intermediates. These results suggest that the residues Q162 and W359 maybe involved in the substrate binding. The allelic mutants T137I, D154N, G308S, G308S/A317S and G384D had minor or significant effects on their protease activity. The relative protease activity of these mutants exhibit in the following order: pro-SPE B > T173I > G308S > G308S/A317S > D154N > G384D >> W359A and Q162N. The digestion of the pro-SPE B C192S mutant by these allelic mutants produced eight intermediates that are similar to wild-type SPE B. These suggested that most allelic forms of SPE B don’t change the substrate specificity but affect their protease activity. Taken together, we provide the evidence that the exotoxin SPE B encoded by streptococcus pyogenes M1 strain is the most active protease. The Q162 and W359 may important roles in both catalytic activity and substrate binding. This study will extend our understanding of the molecular mechanism of SPE B and its variants.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XI 縮寫檢索表 XII 儀器 XIII 第1章 緒論 1 1-1 化膿性鏈球菌之介紹 1 1-2 熱原性鏈球菌外毒素B (SPE B) 之介紹 4 1-3熱原性鏈球菌外毒素B之自動催化以及受質特異性的介紹 8 1-4 論文研究動機及內容之簡介 9 第2章 材料及方法 12 2-1 實驗菌株、質体與培養基配方 12 2-1-1 Host strains and genotypes 12 2-1-2 Vector 12 2-1-3 Growth medium 12 2-2 ProSPE B定點突變株的重組基因之構築 13 2-2-1 聚合酶連鎖反應 14 2-2-2 各種突變株設計的PCR 14 2-2-3 電泳法回收DNA片段 15 2-2-4 變性、黏合、延展 15 2-2-5 構築PCR片段於pET21a質體中 15 2-2-6 E. coli形質轉移 (transformation) 18 2-3 ProSPE B突變株重組蛋白的表現及純化 22 2-3-1 ProSPE B突變株重組蛋白的表現 23 2-3-2 ProSPE B突變株重組蛋白的純化 23 2-4 SDS-PAGE分析 24 2-5 ProSPE B突變株重組蛋白之質譜儀分析 26 2-6 ProSPE B突變株重組蛋白之功能分析 27 2-6-1利用特異性基質之酵素活性分析 27 2-6-2計算SPE B突變株對特異性受質的酵素活性 28 2-6-3利用一般基質之酵素活性分析 28 2-6-4計算SPE B突變株對一般受質的酵素活性 29 2-6-5 自動催化之分析 30 第3章 結果 31 3-1 ProSPE B突變株重組基因的製備 31 3-2 ProSPE B突變株重組蛋白的製備 32 3-3 ProSPE B突變株重組蛋白之質譜儀分析 34 3-4 ProSPE B突變株重組蛋白之功能分析 34 3-4-1利用特異性受質之酵素活性分析(protease activity)之分析 34 3-4-2計算SPE B突變株對特異性受質的酵素活性 35 3-4-3利用一般受質之酵素活性分析 36 3-4-4計算SPE B突變株對一般受質的酵素活性 37 3-4-5 自動催化(autocatalysis)之分析 38 第4章 討論 39 第5章 結論 46 參考文獻 48 圖 56 表 79 自述 82

    Androulla Efstratiou Group a streptococci in the 1990s. J. Antimicrobial Chemotherapy 45:3-12, 2000.
    Berge, A. and Bjorck, L. Streptococcal cysteine protease releases biologically active fragments of streptococcal surface proteins. J. Biol. Chem. 270: 9862-9867, 1995.
    Bhakdi, S., Roth, M., Sziegoleit, A., and Tranum-Jensen, J. Isolation of two hemolytic forms of streptolysin O. Infect. Immun. 46: 394-400, 1984.
    B. K. G. Eriksson, J. Andersson, S. E. Holm, and M. Norgren Epidemiological and clinical aspects of invasive group a streptococcal infections and the streptococcal toxic shock syndrome. Clinical infectious disease 27:1428-1436, 1998.
    Bohach, G. A., Hauser, A. R., and Schlievert, P. M. Cloning of the gene , speB, for streptococcal pyrogenic exotoxin type B in Escherichia coli. Infect. Immun. 56:1665-1667, 1988.
    Burns, E. H., Marciel, Jr., A. M., and Musser, J. M. Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease. Infect. Immun. 64: 4744-4750, 1996.
    Chiu-Yueh Chen, Shih-Chi Luo, Chih-Feng Kuo, Yee-Shin Lin, Jiunn-Jong Wu, Ming T. Lin, Ching-Chuan Liu, Wen-Yih Jeng, and Woei-Jer Chuang Maturation Processing and Characterization of Streptopain. The Journal of biological chemistry 278(19):17336-17343, 2003.
    Cone, L. A., Woodard, D. R., Schlivert, P. M., and Tomory, G. S. Clinical and bacteriologic observations of a toxic shock-like syndrome due to Streptococcus pyogenes. N. Engl. J. Med. 317: 146-149, 1987.
    Dale, J. B., Washburn, R. G., Marques, M. B., and Wessels, M. R. Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect. Immun. 64: 1495-1501, 1996.
    D’Costa, S. S. and Boyle, M. D. Interaction of a group A streptococcus within human plasma results in assembly of a surface plasminogen activator that contributes to occupancy of surface plasmin-binding structures. Microb. Pathog. 24: 341-349, 1998.
    DeAngelis, P. L., Yang, N., and Weigel, P. H. The Streptococcus Pyogenes hyaluronidase synthetase: sequence comparison and conservation among various group A strains. Biochem. Biophy. Res. Commun. 199:1-10, 1994.
    Elliott, S. D. and Dole V. P. An inactive precursor of streptococcal proteinase. J. Exp. Med. 85:305-320, 1947.
    Elliott, S. D. A proteolytic enzyme produced by group A streptococci with special reference to its effect on the type-specific M protein antigen. J. Exp. Med. 92:201-219, 1950.
    Gerlach, D., Knoll, H., Kohler, W., Ozegowski, J-H., and Hribalova, V. Isolation and characterization of erythrogenic exotoxins. V. Communication: identity of erythrogenic toxin type B and streptococcal proteinase precursor. Zbl Bakt Hyg, Iabt Orig A. 255:221-223, 1983.
    Hauser, A. R. and Schlievert, P. M. Nucleotide sequence of the streptococcal pyrogenic exotoxin type B gene and relationship between the toxin and the streptococcal proteinase precursor. J. Bacteriol. 172: 4536-4542, 1990.
    Hauser, A. R., Stevens, D. L., Kaplan, E. L., and Schlievert, P. H. Molecular analyse of pyrogenic exotoxin from Streptococcus pyogenes isolates associated with toxic shock like syndrome. J. Clin. Microbiol. 29:1562-1567, 1991.
    Herwald, H., Collin, M., Muller-Esterl, W., and Bjorck, L. Streptococcal cysteine protease releases kinins: a novel virulence mechanism. J. Exp. Med. 184: 665-673, 1996.
    Higuchi, R., Kummel, B., and Saiki, R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragements: study of protein and DNA interactions. Nucleic Acids Res. 16:7351-7367, 1988.
    Ho, S. N., H. D. Hunt, R. M. Morton, J. K. Pullen, and L. R. Pese. Site directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51-59, 1989.
    Holm, S. E., Norrby, A., Bergholm, A-M., and Norgren, M. Aspects of pathogenesis of serious group A streptococcal infections in Sweden, 1988-1989. J. Infect. Dis. 166: 31-37, 1992.
    J. Bradford kline and Caleen M. Collins Analysis of superantigenic of mutant and allelic forms of streptococcal pyrogenic exotoxin A. Infect. Immun. 64(3):861-869 1996
    Ji, Y., McLandsborough, L., Kondagunta, A., and Cleary, P. P. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect. Immun. 64: 503-510, 1996.
    John D. Doran1, and Edmund Ziomek1. Autocatalytic processing of the streptococcal cysteine protease zymogen. Processing mechanism and characterization of the autoproteolytic cleavage sites. Eur. J. Biochem. 263: 145-151, 1999.
    Johnson D. R., Stevens D. L., and Kaplan E. L. Epidemiologic analysis of group A streptococcal serotypes associated with severe systemic infections, rheumatic fever or uncomplicated pharyngitis J. Infect. Dis. 166:374-382, 1992.
    Junichi Yamaoka, Eijiro Nakamura, Yoshifumi Takeda, Sadao Imamura, and Nagahiro Minato. Mutational analysis of superantigen activity responsible for the induction of skin erythema by streptococcal pryogenic exotoxin C. Infect. Immun. 66(10):5020-5026, 1998.
    Kagawa , T. F., and Edward N. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: An integrin-binding cysteine protease PNAS 97: 2235–2240 , 2000.
    Kapur, V., Topouzis, S., Majeasky, M.W., Li, L. L., Hamrick, M. R., Hamill, R. J., Patti, J. M., and Musser, J. M. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb. Pathog. 15: 327-346, 1993a.
    Kapur, V., Majeasky, M. W., Li, L. L., Black, R. A., and Musser, J. M. Cleavage of interleukin 1 (IL-1) precursor to produce active IL-1  by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 90: 7676-7680, 1993b.
    Kapur, V., Maffei, J. T., Greer, R. S., Li, L. L., Adams, G. J., and Musser, J. M. Vaccination with streptococcal extracellular cysteine protease (interleukin-1convertase) protests mice against challenge with heterologous group A strepthcocci. Microb. Pathog. 16:443-450, 1994.
    Kathryn E. Stockbauer, Diana Grigsby, Xi Pan, Yun-Xin Fu, Luis M. Perea Mejia, Alejandro Cravioto, and James M. Musser Hypervariability generated by natural selection in an extracellular complement-inhibiting protein of serotype M1 strains of group a streptococcus. Proc. Natl. Acad. Sci. USA 95:3128-3133 1998.
    Kathryn E. Stockbauer, Loranna Magoun, Meng Yao Liu, Eugene H. Burns, Jr., Siddeswar Gubba, Sarah Renish, Sarah C. Bodary, Elizabeth Baker, Jenifer Coburn, John M. Leong, and James M. Musser. A natural variant of the cysteine protease virulence factor of group a Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins αvβ3 andαIIbβ3. Proc. Natl. Acad. Sci. USA 96:242-247 1999
    Kehoe, M., and Timmis, K. N. Cloning and expression in Escherichia coli of the streptolysin O determinant from Streptococcus pyogenes: characterization of the cloned streptolysin O determinant and demonstration of the absence of substantial homology with determinants of other thiol-activated toxins. Infect. Immun. 43(3): 804-10, 1984
    Kim, Y. B. and D. W. Watson. Streptococcal exotoxins: biological and pathological properties, p. 33-50. 1972. In L. W. Wannamaker and J. H. Matsen (ed.), Streptococcal diseases. Recognition, understanding and management. Academic Press, New York.
    Kuo, C-F., Wu, J-J., Lin, K-Y., Tsai, P-J., Lee, S-C., Jin, Y-T., Lei, H-Y., and Lin, Y-S. Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect. Immun. 66: 3931-3935, 1998.
    Kuo, C-F., Wu, J-J., Tsai, P-J., Kao, F-J., Lei, H-Y., Lin, M. T., and Lin, Y-S. Streptococcal pyrogenic exotoxin B induces apoptosis and reduces phagocytic activity in U937 cells. Infect. Immun. 67: 126-130, 1999.
    Liu, T-Y., Neumann, N. P., Elliott, S. D., Moore, S., and Stein, W. H. Chemical properties of streptococcal proteinase and its zymogen. J. Biol. Chem. 238:251-256, 1963.
    Liu, T-Y. and Elliott, S. D. Streptococcal protease: the zymogen to enzyme transformation. J. Biol. Chem. 240: 1138-1142, 1965.
    Lukomski, S., Sreevatsan, S., Amberg, C., Reichardt, W., Woischnik, M., Podbielski, A., and Musser, J. M. Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotype M3 and M49 strains. J. Clin. Invest. 99: 2574-2580, 1997.
    Madeleine W. Cunningham Pathogenesis of group a streptococcal infection. Clinical Microbiology Reviews 1:470-511, 2000.
    Michael W. Thompson, Meera Govindaswami, and Louis B. Hersh Mutation of active site residues of the puromysin-sensitive aminopeptidase: conversion of the enzyme into a catalytically inactive binding protein. Archives of Biochemistry and Biophysics 412:236-242, 2003.
    Motoyoshi Nomizu, Grzegorz Pietrzynski, Tamaki Kato, Paule Lachance, Robert Menard. Substrate specificity of the streptococcal cysteine protease. The J. of biological chemistry 276(48):44551-44556 2001.
    Musser, J.M., Hauser, A. R., Kim, M. H., Schlievert, P. M., Nelson, K., and Selander, R. K. Streptococcus pyogenes causing toxic-shock-like syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression Proc. Natl. Acad. Sci. USA 88: 2668-2672, 1991.
    Musser, J. M., Stockbauer, K., Kapur, V., and Rudgers, G. W. Substitution of cysteine 192 in a highly conserved Streptococcus pyrogenes extracellular cysteine protease (Interleukin 1 convertase) alters proteolytic activity and ablates zymogen processing. Infect. Immun. 64: 1913-1917, 1996.
    Musser , J. M. Streptococcal Superantigen, Mitogenic Factor, and Pyrogenic Exotoxin B Expressed by Streptococcus pyogenes Prep. Biochemistry & Biotechnology, 27: 143-172, 1997.
    Norrby-Teglund, A., Norgren, M., Holm, S. E., Anderson, U., and Anderson, J. Similar cytokine induction profiles of a novel streptococcal exotoxin, MF, and pyrogenic exotoxins A and B. Infect. Immun. 62: 3731-3738, 1994.
    O’Connor, S. P. and Cleary, P. P. Localization of the streptococcal C5a peptidase to the surface of group A streptococci. Infect. Immun. 53: 432-434, 1986.
    Ohara-Nemoto, Y., Sasaki, M., Kaneko, M., Nemoto, T., and Ota, M. Cysteine protease activity of streptococcal pyrogenic exotoxin B. Can. J. Microbiol. 40: 930-936, 1994.
    Perczle, A., Hollosi, M., Tusnady, G., and Fasman, G. D. Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins. Protein Eng. 4, 669-679, 1991.
    Perczle, A., Park, K., and Fasman, G. D. Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: A practical guide. Anal. Biochem. 203, 83-93, 1992.
    Pinkney, M., Kapur, V., Smith, J., Weller, U., Palmer, M., Glanville, M., Messner, M., Musser, J. M., Bhakdi, S., and Kehoe, M. A. Different forms of streptolysin O produced by Streptococcus pyogenes and by Escherichia coli expressing recombinant toxin: cleavage by streptococcal cysteine protease. Infect. Immun. 63: 2776-2779, 1995.
    Robinson, J. H. and Kehoe, M. A. Group A streptococcal M proteins: virulence factors and protective antigens. Immunol. Today 13: 362-367, 1992.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual, Cold Cpring Harbor Laboratory. Cold Spring Habor NY, 1989.
    Sean D. Reid, Nancy P. Hoe, Laura M. Smoot, and James M. Musser Group a streptococcus allelic variation, population genetic, and host-pathogen interactions The J. of Clinical Investigation 107:393-399, 2001.
    Shanley, T. P., Schrier, D., Kapur, V., Kehoe, M., Musser, J. M., and Ward, P. A. Streptococcal cysteine protease augments lung injury induced by products of group A streptococci. Infect. Immun. 64: 870-877, 1996.
    Sha, Z, Stockbauer, K., Rudgers, G., and Musser, J. M. Subsitution of Cys-192 and His-340 in streptococcus pyogenes extracellular cysteine protease alter ablates zymogen processing and proteolytic activity, abstr. D111. In Abstracts of the 96th General Meeting of the American Sorciety for Microbiology 1996. American Society for Microbiology, D.C.
    Shih-Chi Luoa, Chiu-Yueh Chena, Yee-Shin Linb, Wen-Yih Jenga and Woei-Jer Chuang Letter to the Editor: Backbone 1H, 15N and 13C resonance assignments of the 28 kDa mature form of streptopain. Journal of Biomolecular NMR, 25: 165–166, 2003.

    Speziale, P., Hook, M., Switalski, L. M., and Wadstrom, T. Fibronectin binding to a Streptococcus pyogenes strain. J. Bacteriol. 157: 420-427, 1984.
    Stevens, D. L., Tanner, M. H., and Winship, J. Severe group A streptococcal infections associated with a toxic shock like syndrome and scarlet fever toxin A. N. Eng. J. Med. 321:1-8, 1989.
    Tai, J. Y., Kortt, A. A., Liu, T-Y., and Elliott, S. D. Primary structure of streptococcal protease. III. Isolation of cyanogen bromide peptides: complete covalent structure of the polypeptide chain. J. Biol. Chem. 251: 1955-1959, 1976.
    Tsai, P-J., Kuo, C-H., Lin, K-Y., Lin, Y-S., Lei, H-Y., Chen, F-F., Wang, J-R., and Wu, J-J. Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect. Immun. 66: 1460-1466, 1998.
    Vernet, T., Khouri, H. E., Laflamme, P., Tessier, D. C., Musil, R., Gour-Salin, B. J., Storer, A. C., Thomas, D. Y. Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. J. Biol. Chem. 1991 Nov 15; 266 (32):21451-7. Webb, E. C. (Editor), 1992.
    Wolf, B. B., Gibson, C. A., Kapur, V., Hussaini, I. M., Musser, J. M., and Gonias, S. L. Proteolytically active streptococcal pyrogenic exotoxin B cleaves monocytic cell urokinase receptor and releases an active fragment of the receptor from the cell surface. J. Biol. Chem. 269: 30682-30687, 1994.
    Yonaha, K., Elliott, S. D., and Liu, T-Y. Primary structure of zymogen of streptococcal protease. J. Protein Chem. 1: 317-334, 1982.
    Yu, E-Y. and Ferreti, J. J. Frequency of the erythrogenic toxin B and C gene (speB and speC) among clinical isolates of group A streptococci. Infect. Immun. 59:211-215, 1991.
    Yukino Watanabe, Yuko Todome, Hisashi Ohkuni, Shinsaku Skurada, Toshio Ishikawa, Takashi Yutsudo, Vincent A. Fischetti, and John B. Zabriskie Cyeteine protease activity and histamine release form the human mast cell line HMC-1 stimulated by recombinant streptococcal pyrogenic exotoxin B/streptococcal cysteine protease. Infect. Immun. 70: 3944-3947, 2002.
    陳秋月 Expression and Characterization of Streptococcal Pyrogenic Exotoxin B 國立成功大學生物化學研究所碩士論文. 1999.

    羅世奇 Preparation and Structure Determination of Active Streptococcal Pyrogenic Exotoxin B 國立成功大學生物化學研究所碩士論文.2001.

    下載圖示 校內:2004-07-31公開
    校外:2004-07-31公開
    QR CODE