| 研究生: |
鄭丞佑 Cheng, Cheng-Yu |
|---|---|
| 論文名稱: |
以功能性共單體製備模版高分子薄膜用於交流阻抗式之肌酸酐濃度感測 Fabrication of molecularly imprinted polymeric thin film by functional co-monomers for the AC impedance detection of creatinine concentration |
| 指導教授: |
侯聖澍
Hou, Sheng-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 肌酸酐 、分子模版高分子 、交流阻抗式 |
| 外文關鍵詞: | creatinine, molecularly imprinted polymer (MIP), AC impedance |
| 相關次數: | 點閱:126 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肌酸酐 (Creatinine) 是肌酸代謝最終產物,為臨床診斷腎功能重要指標,因此血液及尿液中的肌酸酐濃度是相當重要的生理檢測項目。本研究以共功能性單體製備肌酸酐模版高分子膜披覆於電極上,並以交流阻抗式感測肌酸酐濃度。本研究先合成主要的功能性單體。以 2-amino-5-bromo-3-nitropyridine (ANBP) 為反應物,用乙烯基取代溴,合成單體 2-amino-3-nitro-5-vinylpyridine (ANVP),再以 1H-NMR進行鑑定,確認單體正確合成。肌酸酐模版高分子薄膜之製備,乃是以肌酸酐為模版分子,加入兩種以上的功能性單體,以共單體進行合成,是由自行合成的ANVP 與 methacrylic acid (MAA)、1-vinylimidazole (1-VD) 及 4-vinylpyridine (4-VP) 等作不同的單體組合,接著加入交聯劑 ethylene glycol dimethacrylate (EGDMA),在起始劑 2,2′-azobisisobutyronitrile (AIBN) 作用下進行聚合反應,以製備分子模版高分子 (molecularly imprinted polymer, MIP)。
本論文以交流阻抗進行連續式肌酸酐濃度感測,也探討預聚合液中各成份之比例對感測靈敏度及模印指數之影響。由實驗結果可知,功能性共單體與交聯劑之莫爾比為 1: 25 時,電極會有較佳之模印效果。MIP 電極之靈敏度以阻抗與相位角進行估算,分別為 0.68 ± 0.04 ((|Z|–|Zo|)/|Zo| / (mg/dL)) 與 0.41 ± 0.09 ((θ–θo)/θo / (mg/dL)),其阻抗與相位角分析之模印指數分別為 1.94 及 1.78。在肌酸酐選擇性實驗上,是以肌酸 (creatine) 與N-烴基丁二醯亞氨 (N-hydroxysuccinimide, NHS) 分別作為共存物及相似物。在雙成份混合液下共存物之選擇率 (creatinine/creatine),為 76.52 (以阻抗計);在雙成份混合液中,以阻抗變化進行估算,則相似物之選擇率 (creatinine/NHS) 分別為 7.49 (各成份濃度10 mg/dL) 及 9.53 (各成份濃度50 mg/dL)。MIP 電極重複使用性測試中,在六次重複使用後,阻抗與相位角回復率仍相當良好;另外,在重複暨保存性方面,經過二十天保存及十次使用後,其穩定性雖隨時間越長而較差,但仍具有辨識能力。綜觀以上,此模版高分子膜電極對肌酸酐具有良好辨識能力,未來能應用於臨床檢測,可更進一步朝微小化生醫感測器發展。
A novel AC impedance sensor based on molecularly imprinted polymer (MIP) has been developed for the measurement of creatinine concentration. Creatinine is a significant biomarker for the diagnosis of kidney function because it can be easily measured in urine and serum. Therefore, the measurement of creatinine became critical in clinical analysis. In this study, we used three combinations of monomers, including 2-amino-5-bromo-3-nitro-pyridine (ANVP), methacrylic acid (MAA), 1-vinylimidazole (1-VD), 4-vinylpyridine (4-VP), as functional co-monomers. In the presence of creatinine template, EGDMA (ethylene glycol dimethacrylate) as the crosslinker was added. With the initiator AIBN (2, 2′-azobisisobutyronitrile) and UV irradiation, photo-polymerization was triggered. The MIP was extracted to remove, then creatinine imprinted polymer was obtained. The results indicate sensitivities of MIP film in impedance and phase angle are calculated by 0.68 ± 0.04 ((|Z|–|Zo|)/|Zo| / (mg/dL)) and 0.41 ± 0.09 ((θ–θo)/θo / (mg/dL)), then imprinting factors in impedance and phase angle analysis are 1.94 and 1.78. The MIP electrode has excellent selectivity tests for creatinine in the presence of creatine and N-hydroxysuccinimide (NHS). Selectivity in impedance analysis for creatinine in the presence of creatine is 76.52. Additionally, selectivities in impedance analysis for creatinine/NHS are 7.49 (10 mg/dL) and 9.53 (50 mg/dL) respectively. In summary, this MIP electrode has great potential in the development of microbiosensor and for being used on clinical detection in the future.
1. “Web of Science [v.5.17] Thomson reuters, http://www.webofscience.com/, 2015.05.02.”
2. YY Leung, CC Szeto, LS Tam, CWK Lam, EK Li, KC Wong, SW Yu, EW Kun, Urine protein-to-creatinine ratio in an untimed urine collection is a reliable measure of proteinuria in lupus nephritis, Rheumatology, 46, 649‐652, 2007
3. J Wang, Electrochemical glucose biosensors, Chemical Reviews, 108, 814‐825, 2008
4. KR Rogers, Recent advances in biosensor techniques for environmental monitoring, Analytica Chimica Acta, 568, 222‐231, 2006
5. B Krajewska, Application of chitin- and chitosan-based materials for enzyme immobilizations: a review, Enzyme and Microbial Technology, 35, 126‐139, 2004
6. KH Wang, MJ Syu, CH Chang, YL Lee, Immobilization of glucose oxidase by Langmuir–blodgett technique for fabrication of glucose biosensors: headgroup effects of template monolayers, Sensors and Actuators B, 164, 29‐36, 2012
7. MJ Syu, YS Chang, Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix, Biosensors and Bioelectronics, 24, 2671‐2677, 2009
8. Y Jung, JY Jeong, BH Chung, Recent advances in immobilization methods of antibodies on solid supports, Analyst, 113, 697‐701, 2008
9. JJ Storhoff, SS Marla, P Bao, S Hagenow, H Mehta, A Lucas, V Garimella, T Patno, W Buckingham, W Cork, UR Müller, Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system, Biosensors and Bioelectronics, 19, 875‐883, 2004
10. RV Shutov, A Guerreiro, E Moczko, IPV Sansalvador, I Chianella, MJ Whitcombe, SA Piletsky, Introducing MINA – the molecularly imprinted nanoparticle assay, Small, 10, 1086‐1089, 2014
11. RM Garcinuño, I Chianella, A Guerreiro, I Mijangos, EV Piletska, MJ Whitcombe, SA Piletsky, The stabilisation of receptor structure in low cross-linked MIPs by an immobilised template, Soft Matter, 5, 311‐317, 2009
12. GF Khana, W Wernet, A highly sensitive amperometric creatinine sensor, Analytica Chimica Acta, 351, 151‐158, 1997
13. M Wyss, R Kaddurah-Daouk, Creatine and creatinine metabolism, Physiological Reviews, 80, 1107‐1213, 2000
14. 吳明儒,評估腎臟功能的方法,腎臟與病析,台灣腎臟醫學會,19 卷 2 期,2007
15. S Narayanan, HD Appleton, Creatinine: a review, Clinical Chemistry, 26, 1119‐1126, 1980
16. M Meyerhoff, GA Hechnitz, An activated enzyme electrode for creatinine, Analytica Chimica Acta, 85, 277‐285, 1976
17. T Tsuchida, K Yoda, Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum, Clinical Chemistry, 29, 51‐55, 1983
18. HA Tsai, MJ Syu, Synthesis of creatinine-imprinted poly(β-cyclodextrin) for the specific binding of creatinine, Biomaterials, 26, 2759‐2766, 2005
19. Y Yoshimi, R Arai, S Nakayama, Influence of the solvent on nature of gate effect in molecularly imprinted membrane, Analytica Chimica Acta, 682, 110‐116, 2010
20. L Pauling, A theory of the structure and process of formation of antibodies, Journal of the American Chemical Society, 62, 2643‐2657, 1940
21. “Web of Science [v.5.17] Thomson reuters, http://www.webofscience.com/, 2015.05.03.”
22. G Vasapollo, RD Sole, L Mergola, MR Lazzoi, A Scardino, S Scorrano, G Mele, Molecularly imprinted polymers: present and future prospective, International Journal of Molecular Sciences, 12, 5908‐5945, 2011
23. VJB Ruigrok, M Levisson, MHM Eppink, H Smidt, J Oost, Alternative affinity tools: more attractive than antibodies, Biochemical Journal, 436, 1‐13, 2011
24. R Arshady, K Mosbach, Synthesis of substrate-selective polymers by host-guest polymerization, Macromolecular Chemistry and Physics, 182, 687‐692, 1981
25. MJ Syu, JH Deng, YM Nian, Towards bilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate) for the specific binding of α-bilirubin, Analytica Chimica Acta, 504, 167‐177, 2004
26. Y Fuchsa, O Soppera, K Haupt, Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications‐a review, Analytica Chimica Acta, 717, 7‐20, 2012
27. BR Hart, KJ Shea, Synthetic peptide receptors: molecularly imprinted polymers for the recognition of peptides using peptide-metal interactions, Journal of the American Chemical Society, 123, 2072‐2073, 2001
28. Y Ge, APF Turner, Too large to fit? Recent developments in macromolecular impri-nting, Trends in Biotechnology, 26, 218‐224, 2008
29. TA Sergeyeva, LA Gorbachb, EV Piletska, SA Piletsky, OO Brovko, LA Honcharova, OD Lutsyk, LM Sergeeva, OA Zinchenko, AV El’skaya, Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes, Analytica Chimica Acta, 770, 161‐168, 2013
30. SA Piletsky, EV Piletska, K Karim, KW Freebairn, CH Legge, APF Turner, Polymer cookery: influence of polymerization conditions on the performance of molecularly imprinted polymers, Macromoleculars, 35, 7499‐7504, 2002
31. SC Zimmerman, NG Lemcoff, Synthetic hosts via molecular imprinting‐are universal synthetic antibodies realistically possible? Chemical Communications, 5‐14, 2004
32. B Sellergren, KJ Shea, Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers, Journal of Chromatography A, 635, 31‐49, 1993
33. K Skudar, O Brüggemann, A Wittelsberger, O Ramström, Selective recognition and separation of β-lactam antibiotics using molecularly imprinted polymers, Analytical Communications, 36, 327‐331, 1999
34. O Brüggemann, K Haupt, L Ye, E Yilmaz, K Mosbach, New configurations and applications of molecularly imprinted polymers, Journal of Chromatography A, 889, 15‐24, 2000
35. C Nantasenamat, C Isarankura-Na-Ayudhya, T Naenna, V Prachayasittikul, Quan-titative structure-imprinting factor relationship of molecularly imprinted polymers, Biosensors and Bioelectronics, 22, 3309‐3317, 2007
36. AG Mayes, K Mosbach, Molecularly imprinted polymer beads: suspension polymeri-zation using a liquid perfluorocarbon as the dispersing phase, Analytical Chemistry, 68, 3769‐3774, 1996
37. MT Gokmen, FE Du Prez, Porous polymer particles‐a comprehensive guide to synthesis, characterization, functionalization and applications, Progress in Polymer Science, 37, 365‐405, 2012
38. L Ye, PAG Cormack, K Mosbach, Molecularly imprinted monodisperse microspheres for competitive radioassay, Analytical Communications, 36, 35‐38, 1999
39. J Haginaka, Monodispersed, molecularly imprinted polymers as affinity-based chromatography media, Journal of Chromatography B, 866, 3‐13, 2008
40. NW Turner, BE Wright, V Hlady, DW Britt, Formation of protein molecular imprints within Langmuir monolayers: a quartz crystal microbalance study, Journal of Colloid and Interface Science, 308, 71‐80, 2007
41. C Malitesta, E Mazzotta, RA Picca, A Poma, I Chianella, SA Piletsky, MIP sensors – the electrochemical approach, Analytical and Bioanalytical Chemistry, 402, 1827‐1846, 2012
42. G Vasapollo, RD Sole, L Mergola, MR Lazzoi, A Scardino, S Scorrano, G Mele, Molecularly imprinted polymers: present and future prospective, International Journal of Molecular Sciences, 12, 5908‐5945, 2011
43. F Lanza, B Sellergren, Method for synthesis and screening of large groups of molecularly imprinted polymers, Analytical Chemistry, 71, 2092‐2096, 1999
44. OYF Henry, DC Cullen, SA Piletsky, Optical interrogation of molecularly imprinted polymers and development of MIP sensors: a review, Analytical and Bioanalytical Chemistry, 382, 947‐956, 2005
45. J Matsui, H Kubo, T Takeuchi, Molecularly imprinted fluorescent-shift receptors prepared with 2-(trifluoromethyl)acrylic acid, Analytical Chemistry, 72, 3286‐3290, 2000
46. R Pernites, R Ponnapati, MJ Felipe, R Advincula, Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: pre-polymerization complexed terthiophene and carbazole electroactive monomers, Biosensors and Bioelectronics, 26, 2766‐2771, 2011
47. AH Wu, MJ Syu, Synthesis of bilirubin imprinted polymer thin film for the continuous detection of bilirubin in an MIP/QCM/FIA system, Biosensors and Bioelectronics, 21, 2345‐2353, 2006
48. A Pietrzyk, W Kutner, R Chitta, ME Zandler, FD Souza, F Sannicolo, PR Mussini, Melamine acoustic chemosensor based on molecularly imprinted polymer film, Analytical Chemistry, 81, 10061‐10070, 2009
49. S Alegret, Rigid carbon-polymer biocomposites for electrochemical sensing, Analyst, 121, 1751‐1758, 1996
50. HJ Chen, ZH Zhang, LJ Luo, SZ Yao, Surface-imprinted chitosan-coated magnetic nanoparticles modified multi-walled carbon nanotubes biosensor for detection of bovine serum albumin, Sensors and Actuators B, 163, 76‐83, 2012
51. MJ Syu, TC Chiu, CY Lai, YS Chang, Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly(MAA-co-EGDMA) film, Biosensors and Bioelectronics, 22, 550‐557, 2006
52. AJ Bard, LR Faulner, Electrochemical methods fundamentals and applications, 2nd Ed. , John Wiley & Sons, 368‐414, 2001
53. H Peng, C Soeller, NA Vigar, V Caprio, J Travas-Sejdic, Label-free detection of DNA hybridization based on a novel functionalized conducting polymer, Biosensors and Bioelectronics, 22, 1868‐1873, 2007
54. TL Delaney, D Zimin, M Rahm, D Weiss, OS Wolfbeis, VM Mirsky, Capacitive detection in ultrathin chemosensors prepared by molecularly imprinted grafting photopolymerization, Analytical Chemistry, 79, 3220‐3225, 2007
55. KK Reddy, KV Gobi, Artificial molecular recognition material based biosensor for creatinine by electrochemical impedance analysis, Sensors and Actuators B, 183, 356‐363, 2013
56. N Sundaraganesan, S Ilaliamani, Hsaleem, S Mohan, FT-Raman, FTIR spectra and normal coordinate of 5-bromo-2-nitropyridine, Indian Journal of Pure & Applied Physics, 42, 585‐590, 2004
57. AV Sapegin, SA Kalinin, AV Smirnov, MV Dorogov, M Krasavin, New tetracyclic 1,4-oxazepines constructed via practically simple tandem condensation strategy from readily available synthons, Tetrahedron, 70, 1077‐1083, 2014
58. N Trendafilova, AP Kurbakova, IA Efimenko, M Mitewa, PR Bontchev, Infrared spectra of Pt(II) creatinine complexes. Normal coordinate analysis of creatinine and Pt(creat)2(NO2)2, Spectrochimica Acta, 47, 577‐584, 1991
59. Y Yoshimi, R Arai, S Nakayama, Influence of the solvent on nature of gate effect in molecularly imprinted membrane, Analytica Chimica Acta, 682, 110‐116, 2010
60. Z Zhang, Y Long, L Nie, S Yao, Molecularly imprinted thin film self-assembled on piezoelectric quartz crystal surface by the sol–gel process for protein recognition, Biosensors and Bioelectronics, 21, 1244‐1251, 2006