| 研究生: |
王致皓 Wang, Chih-Hao |
|---|---|
| 論文名稱: |
無催化劑熱蒸鍍法合成氧化鎢奈米線及其元件應用 Catalyst-free synthesis of tungsten oxide nanowires via thermal evaporation and their device applications |
| 指導教授: |
呂國彰
Lu, Kuo-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 氧化鎢奈米線 、奈米線電阻係數 、熱蒸鍍 、品質工程 、電致變色 、鉬摻雜 |
| 外文關鍵詞: | nanowires, thermal evaporation, resistivity, electrochromic device, doping |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以熱蒸鍍法利用三氧化鎢粉末做為前驅物搭配大流量載流氣體在矽基板合成W18O49奈米線,並搭配田口品質工程使製程參數最佳化,進而分析各參數對奈米線成長的影響;根據眾多文獻以及本研究結構分析結果,確認此奈米線成長機制應為汽相‒固相(vapor – solid, V-S)成長機制,利用氧化鎢蒸汽直接在目標基板上沉積成核形成奈米線;本研究亦嘗試摻雜鉬元素於氧化鎢奈米線內,依TEM分析結果表示,鉬元素以鉬鎢元素比1:7均勻分布於奈米線內;比較有無摻雜鉬的奈米線電組係數值,無摻雜的奈米線電阻係數值為2.32 x 10-5 m-Ω,而具鉬摻雜的奈米線電阻係數值為3.76 x 10-4 m-Ω,兩者皆優於文獻值,提高氧原子空缺濃度能夠增加電子傳導性質,而鉬原子屬於間隙型摻雜,會阻礙電子傳導。本研究亦將氧化鎢奈米線成長在ITO透明玻璃基板上,以製作電致變色元件,經測試後發現有優秀的循環壽命以及快速的反應變色速度。
In this study, oxygen-vacancy-rich tungsten oxide nanowires with high aspect ratio of around 700 were successfully synthesized on (100) Si wafer and ITO glass substrate via thermal evaporation without any catalyst. The growth mechanism of the nanowires was vapor-solid (VS) mechanism and TEM studies show that they were WO3-x nanowires with rich oxygen vacancies. We also tried to dope molybdenum into WO3-x nanowires to change relative properties. TEM and EDS studies show that Mo atoms were homogeneously distributed in the WO3-xnanowires and that the atom ratio of W and Mo was about 7 : 1. To explore and compare electrical properties, we designed an approach to measure a single nanowire resistivity. The resistivities of WO3-x nanowire and Mo-doped one at 300K were 2.32 x 10-5 Ω-m and 3.76 x 10-4 Ω-m, respectively; both were very low because of rich oxygen vacancies, but Mo atoms were interstitial doping in nanowires which may impede electron motion. We assembled electrochromic devices with LiClO4/ PC as the electrolyte and WO3-x nanowires-based ITO glass substrates. The devices possessed fast coloring and bleaching rate of less than a second at low voltage, while at high voltage, they could change to deeper colors; the devices were of great cycle times and response time. These significant results make WO3-x nanowires a promising material for applications in display and green technology.
1. R.A. MILLIKAN, THE DEVELOPMENT OF CHEMISTRY AT THE CALIFORNIA INSTITUTE OF TECHNOLOGY, Science, 87(2269), 565-566(1938).
2. 賴炤銘、李錫隆, 奈米材料的特殊效應與應用, 化學, 61(4), 585-597(2003).
3. R. Kubo, Electronic Properties of Metallic Fine Particles. I, Journal of the Physical Society of Japan, 17(6), 975-986(1962).
4. H.D. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell and K. Kalantar-Zadeh, Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications, Adv. Funct. Mater., 21(12), 2175-2196(2011).
5. M. Weil and W.D. Schubert, The Beautiful Colours of Tungsten Oxides, 1-12(2013).
6. V. Chakrapani, M. Brier, A. Puntambekar and T. DiGiovanni, Modulation of stoichiometry, morphology and composition of transition metal oxide nanostructures through hot wire chemical vapor deposition, J. Mater. Res., 31(1), 17-27(2016).
7. X. Xu, M.A.P. Yazdi, R. Salut, J.-M. Cote, A. Billard and N. Martin, Structure, composition and electronic transport properties of tungsten oxide thin film sputter-deposited by the reactive gas pulsing process, Materials Chemistry and Physics, 205, 391-400(2018).
8. W.-H. Tao and C.-H. Tsai, H2S Sensing Properties of Noble Metal Doped WO3 Thin Film Sensor Fabricated by Micromachining, 81, 237-247(2002).
9. A. De Marcellis, G. Ferri, P. Mantenuto, L. Giancaterini and C. Cantalini, WO3 Hydrogen Resistive Gas Sensor and Its Wide-Range Current-Mode Electronic Read-Out Circuit, Ieee Sensors Journal, 13(7), 2792-2798(2013).
10. N. Dien, D.D. Vuong and D. Chien Nguyen, Hydrothermal synthesis and NH3 gas sensing property of WO3 nanorods at low temperature, 6(2015).
11. A. Reghu, D. Deniz, R. Stennett, G. Bernhardt, D. Frankel, R. Lad and J.J.T. Vetelino, 5.3. 2 WO3 sensor for ppb detection of ammonia, 457-460(2012).
12. M. Akiyama, J. Tamaki, N. Miura and N. Yamazoe, TUNGSTEN OXIDE-BASED SEMICONDUCTOR SENSOR HIGHLY SENSITIVE TO NO AND NO2, Chemistry Letters, (9), 1611-1614(1991).
13. K. Lee, D.-H. Baek, H. Na, J. Choi and J. Kim, Simple fabrication method of silicon/tungsten oxide nanowires heterojunction for NO2 gas sensors, Sensors and Actuators B: Chemical, 265, 522-528(2018).
14. D. Fukushi, A. Sasaki, H. Hirabayashi and M. Kitano, Effect of oxygen vacancy in tungsten oxide on the photocatalytic activity for decomposition of organic materials in the gas phase, Microelectronics Reliability, 79, 1-4(2017).
15. J.R. Platt, Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field, The Journal of Chemical Physics, 34(3), 862-863(1961).
16. S.K. Deb, A Novel Electrophotographic System, Appl. Opt., 8(S1), 192-195(1969).
17. S.K. Deb, Optical and photoelectric properties and colour centres in thin films of tungsten oxide, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 27(4), 801-822(1973).
18. B.W. Faughnan, R.S. Crandall and M.A. Lampert, Model for the bleaching of WO3 electrochromic films by an electric field, Applied Physics Letters, 27(5), 275-277(1975).
19. O.F. Schirmer, V. Wittwer, G. Baur and G. Brandt, Dependence of WO 3 Electrochromic Absorption on Crystallinity, Journal of The Electrochemical Society, 124(5), 749-753(1977).
20. K. Nishio, K. Iwata and H. Masuda, Fabrication of Nanoporous WO 3 Membranes and Their Electrochromic Properties, Electrochemical and Solid-State Letters, 6(10), H21-H23(2003).
21. S.-H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan and A.C. Dillon, Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications, Advanced Materials, 18(6), 763-766(2006).
22. C.-C. Liao, F.-R. Chen and J.-J. Kai, WO3−x nanowires based electrochromic devices, Solar Energy Materials and Solar Cells, 90(7), 1147-1155(2006).
23. Y.-T. Hsieh, M.-W. Huang, C.-C. Chang, U.-S. Chen and H.-C. Shih, Growth and optical properties of uniform tungsten oxide nanowire bundles via a two-step heating process by thermal evaporation, Thin Solid Films, 519(5), 1668-1672(2010).
24. A. Tomy, H. Bohr-Ran and L. Tzu-Ching, Synthesis of Tungsten Oxide Nanowires onto ITO Glass Using T-CVD, Makara Journal of Technology, (3), 103(2014).
25. S. Supothina, R. Rattanakam and M. Suwan, Effect of precursor morphology on the hydrothermal synthesis of nanostructured potassium tungsten oxide, Microelectronic Engineering, 108, 182-186(2013).
26. P. Huang, M.M. Ali Kalyar, R.F. Webster, D. Cherns and M.N.R. Ashfold, Tungsten oxide nanorod growth by pulsed laser deposition: influence of substrate and process conditions, Nanoscale, 6(22), 13586-13597(2014).
27. L. Li, F. Liu, S.Z. Deng, F.Y. Mo, Z.J. Su, S.Y. Jin, J. Chen and N.S. Xu, P1-8: Low temperature gowth and field emission properties of patterned tungsten oxide nanowire arrays by using cceramic template, 44-45(2010).
28. 立林和夫 and 葉琇芳, 入門田口方法. 財團法人中衛發展中心. 臺北市.2008
29. 吳復強, 田口品質工程. 新科技書局. 臺北縣.2002
30. W.H. Gu, H. Choi and K. Kim, Universal approach to accurate resistivity measurement for a single nanowire: Theory and application, Applied Physics Letters, 89(25), 3(2006).
31. J. Zhang, H. Zhang, L. Liu, F. Li and S. Wang, W18O49 nanorods: Controlled preparation, structural refinement, and electric conductivity, Chemical Physics Letters, 706, 243-246(2018).
32. J.G. Zhang, D.K. Benson, C.E. Tracy, S.K. Deb, A.W. Czanderna and C. Bechinger, Chromic Mechanism in Amorphous WO 3 Films, Journal of The Electrochemical Society, 144(6), 2022-2026(1997).
校內:2024-08-28公開