簡易檢索 / 詳目顯示

研究生: 陳彥羽
Chen, Yan-Yu
論文名稱: 鹵化物鈣鈦礦半球形微共振腔的共振模態之模擬分析
Modeling of resonant modes in halide perovskite hemispherical microcavities
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 64
中文關鍵詞: 有限時域差分法半球形微共振腔共振模態
外文關鍵詞: FDTD, hemisphere microcavity, resonant mode
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有限時域差分法(finite-difference time-domain method,FDTD)在近幾年已成為光學元件經常使用的電磁場數值計算 方法之一。對於未來光學元件越來越小的趨勢上,FDTD相關的方法在光學共振腔、波導甚至是光子晶體的設計以及分析都是不可或缺的技術。而微共振腔(microcavity)的小體積優勢、在光學集成線路的應用性、以及可令共振頻率較為稀疏而達成單頻雷射的特性,成為近期光學 領域研究的重點。
    本論文探討不同尺寸的半球形微共振腔之共振頻譜 ,以FDTD模擬計算生長於雲母基板上之鈣鈦礦半球形微共振腔的共振頻譜以及場強度分布,透過改變微共振腔尺寸以及分析不同共振波長,得到不同模態數以及偏振的相關性。並比較半球形微共振腔對於不同共振波長的光學侷限性 。最後,為探究FDTD對於半球形微共振腔其 對應光致發光量測實際應用的可行性,將FDTD計算出之頻譜與本實驗室的CsPbBr3半 球形微共振腔之光致發光光譜做比對,並進一步以其微共振腔內的數值計算場強分佈,結果顯示光致發光頻譜中的波峰是TM模態,得知在樣品的光致發光量測上觀察到的兩個不同波長的尖峰之角方位模態數以及徑向模態數不同。

    The finite-difference time-domain (FDTD) method has become one of the most popular electrodynamics numerical simulation tool for optical components in recent years. As the demand for smaller optical components increases, FDTD-related techniques are essential in the design and analysis of optical resonators, waveguides, and photonics. Moreover, the microcavity, which is characterized by its small size, its applicability in optical integrated circuits, and the ability to make resonance frequency sparse and achieve a single-frequency laser, has become the focus of research on optics. This study investigated the resonance spectrum of different sizes of perovskite hemispherical microcavities grown on mica using FDTD simulation. By changing the size of microcavities and analyzing the resonant wavelength, we obtained the relationship between different mode numbers and polarization. Finally, the spectrum calculated by FDTD was compared with that by the photoluminescence. The results showed that the peaks in the photoluminescence spectrum were the TM modes which were different azimuthal and radial mode numbers.

    摘要 I Abstract II 致謝 VII 章節目錄 IX 圖目錄 XI 第一章 、序論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機 9 第二章 、實驗原理 10 2-1 FDTD之簡介 10 2-1-1 Yee 網格 10 2-1-2 網格尺寸以及穩定條件 13 2-1-3 完美匹配層(PML) 13 2-2 鈣鈦礦材料介紹 15 2-3 微共振腔介紹 17 2-4 偏振方向定義 19 2-5 解析近似法之有效折射率 22 2-6 微共振腔之侷限因子 28 2-7 Lumerical的FDTD solution軟體 30 第三章 、模擬過程與結果討論 32 3-1 小尺寸的半球微共振腔之共振頻譜及電磁波分布 36 3-2 不同半球微共振腔尺寸與模態之關聯性 42 3-3 半球微共振腔之光學侷限因子 45 3-4 FDTD數值模擬與實驗數據比較 51 第四章 、結論 59 第五章 、未來展望 60 第六章 、參考資料 61

    1 Agarwal, R., Barrelet, C. J. & Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano letters 5, 917-920 (2005).
    2 Du, W. et al. Unveiling lasing mechanism in CsPbBr 3 microsphere cavities. Nanoscale 11, 3145-3153 (2019).
    3 Du, W. et al. Strong exciton–photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics 5, 2051-2059 (2018).
    4 Xu, C. et al. Whispering‐gallery mode lasing in ZnO microcavities. Laser & Photonics Reviews 8, 469-494 (2014).
    5 Tamboli, A. C. et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks. Nature photonics 1, 61-64 (2007).
    6 Zhang, X. et al. Organic molecule detection based on SERS in microfluidics. Scientific reports 9, 1-7 (2019).
    7 Piltyay, S., Bulashenko, A., Herhil, Y. & Bulashenko, O. in 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT). 357-363 (IEEE).
    8 Kogon, A. J. & Sarris, C. D. FDTD modeling of periodic structures: A review. arXiv preprint arXiv:2007.05091 (2020).
    9 Ma, X. et al. Miniature resonator sensor based on a hybrid plasmonic nanoring. Optics express 27, 33051-33060 (2019).
    10 Jiang, M. et al. Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities. Optics express 22, 23836-23850 (2014).
    11 Coulon, P.-M. et al. Optical properties and resonant cavity modes in axial InGaN/GaN nanotube microcavities. Optics Express 25, 28246-28257 (2017).
    12 Seo, S.-Y. et al. Far-field observation of the radial profile of visible whispering-gallery modes in a single microdisk based on Si-nanocrystal/Si O 2 superlattices. Journal of Applied Physics 106, 123102 (2009).
    13 Li, X., Ou, F., Huang, Y. & Ho, S.-T. Micro-resonator loss computation using conformal transformation and active-lasing FDTD approach and applications to tangential/radial output waveguide optimization I: Analytical approach. Optics Communications 291, 435-446 (2013).
    14 Tang, B. et al. Ultrahigh Quality Upconverted Single‐Mode Lasing in Cesium Lead Bromide Spherical Microcavity. Advanced Optical Materials 6, 1800391 (2018).
    15 Liu, X. et al. Continuous wave operation of GaAsBi microdisk lasers at room temperature with large wavelengths ranging from 1.27 to 1.41 μm. Photonics Research 7, 508-512 (2019).
    16 Liu, J. et al. Optical waveguide and cavity effects on whispering-gallery mode resonances in a ZnO nanonail. Applied physics letters 95, 221105 (2009).
    17 Wu, C.-S. et al. Hemispherical Cesium Lead Bromide Perovskite Single-Mode Microlasers with High-Quality Factors and Strong Purcell Enhancement. ACS Applied Materials & Interfaces 13, 13556-13564 (2021).
    18 Dai, J. et al. Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature. Applied Physics Letters 97, 011101 (2010).
    19 Wang, L. et al. Optically pumped lasing with a Q-factor exceeding 6000 from wet-etched GaN micro-pyramids. Optics letters 42, 2976-2979 (2017).
    20 Zhang, H. et al. Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition. Chemical Engineering Journal 389, 124395 (2020).
    21 Shen, X. et al. Lasing behaviors in solution processed all-inorganic CsPbBr3 perovskite microsized crystals. Optics Communications 453, 124354 (2019).
    22 Zhou, B. et al. Single-mode lasing and 3D confinement from perovskite micro-cubic cavity. Journal of Materials Chemistry C 6, 11740-11748 (2018).
    23 Wang, X. et al. Near-infrared lasing from small-molecule organic hemispheres. Journal of the American Chemical Society 137, 9289-9295 (2015).
    24 Zhang, Y., Feng, C., Wang, T. & Choi, H. GaN hemispherical micro-cavities. Applied Physics Letters 108, 031110 (2016).
    25 Yee, K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation 14, 302-307 (1966).
    26 Maxwell, J. C. VIII. A dynamical theory of the electromagnetic field. Philosophical transactions of the Royal Society of London, 459-512 (1865).
    27 Berenger, J.-P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics 114, 185-200 (1994).
    28 Bagnall, D. et al. Optically pumped lasing of ZnO at room temperature. Applied Physics Letters 70, 2230-2232 (1997).
    29 Tang, Z. et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied physics letters 72, 3270-3272 (1998).
    30 Rahman-Zadeh, F., Danaie, M. & Kaatuzian, H. Design of a highly sensitive photonic crystal refractive index sensor incorporating ring-shaped GaAs cavity. Opto-Electronics Review 27, 369-377 (2019).
    31 Kiraz, A. et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure. Applied Physics Letters 78, 3932-3934 (2001).
    32 Huang, C.-Y. et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. Acs Photonics 4, 2281-2289 (2017).
    33 Møller, C. K. Crystal structure and photoconductivity of caesium plumbohalides. Nature 182, 1436-1436 (1958).
    34 Weber, D. CH3NH3PbX3, ein Pb (II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb (II)-system with cubic perovskite structure. Zeitschrift für naturforschung B 33, 1443-1445 (1978).
    35 Rhee, S., An, K. & Kang, K.-T. Recent Advances and Challenges in Halide Perovskite Crystals in Optoelectronic Devices from Solar Cells to Other Applications. Crystals 11, 39 (2021).
    36 Kumar, S. et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano letters 17, 5277-5284 (2017).
    37 Du, X. et al. High-quality CsPbBr 3 perovskite nanocrystals for quantum dot light-emitting diodes. RSC advances 7, 10391-10396 (2017).
    38 Vahala, K. J. Optical microcavities. nature 424, 839-846 (2003).
    39 Serpengüzel, A., Arnold, S. & Griffel, G. Excitation of resonances of microspheres on an optical fiber. Optics letters 20, 654-656 (1995).
    40 Yamauchi, T., Arakawa, Y. & Nishioka, M. Enhanced and inhibited spontaneous emission in GaAs/AlGaAs vertical microcavity lasers with two kinds of quantum wells. Applied physics letters 58, 2339-2341 (1991).
    41 Du, Y. et al. Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities. Light: Science & Applications 9, 1-9 (2020).
    42 Lu, J. et al. Dynamic regulating of single-mode lasing in ZnO microcavity by piezoelectric effect. Materials Today 24, 33-40 (2019).
    43 Mintairov, A. et al. High-spatial-resolution near-field photoluminescence and imaging of whispering-gallery modes in semiconductor microdisks with embedded quantum dots. Physical Review B 77, 195322 (2008).
    44 Kanaev, A. V., Astratov, V. N. & Cai, W. Optical coupling at a distance between detuned spherical cavities. Applied physics letters 88, 111111 (2006).
    45 Collins, R. et al. Coherence, narrowing, directionality, and relaxation oscillations in the light emission from ruby. Physical Review Letters 5, 303 (1960).
    46 Rayleigh, L. CXII. The problem of the whispering gallery. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 20, 1001-1004 (1910).
    47 Garrett, C., Kaiser, W. & Bond, W. Stimulated emission into optical whispering modes of spheres. Physical Review 124, 1807 (1961).
    48 Chang, R. K. & Campillo, A. J. Optical processes in microcavities. Vol. 3 (World scientific, 1996).
    49 Borselli, M., Johnson, T. J. & Painter, O. Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. Optics express 13, 1515-1530 (2005).
    50 Slusher, R. et al. Threshold characteristics of semiconductor microdisk lasers. Applied physics letters 63, 1310-1312 (1993).
    51 Mock, A. First principles derivation of microcavity semiconductor laser threshold condition and its application to FDTD active cavity modeling. JOSA B 27, 2262-2272 (2010).
    52 Chang, S.-W. Confinement factors and modal volumes of micro-and nanocavities invariant to integration regions. IEEE Journal of Selected Topics in Quantum Electronics 18, 1771-1780 (2012).
    53 Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires. Proceedings of the National Academy of Sciences 113, 1993-1998 (2016).
    54 Zhang, S. et al. Trapped exciton–polariton condensate by spatial confinement in a perovskite microcavity. Acs Photonics 7, 327-337 (2020).
    55 Wiersig, J. Hexagonal dielectric resonators and microcrystal lasers. Physical Review A 67, 023807 (2003).
    56 Wu, C. et al. Design and simulation of low-threshold miniaturized single-mode nanowire lasers combined with a photonic crystal microcavity and asymmetric distributed-bragg-reflector mirrors. Nanomaterials 10, 2344 (2020).
    57 Ta, V. D., Chen, R., Nguyen, D. & Sun, H. Application of self-assembled hemispherical microlasers as gas sensors. Applied Physics Letters 102, 031107 (2013).

    無法下載圖示 校內:2026-08-25公開
    校外:2026-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE