| 研究生: |
邱子庭 Chiou, Tz-Ting |
|---|---|
| 論文名稱: |
非牛頓熱液動力頸軸承潤滑模式之建立 A Non-Newtonian Thermohydrodynamic Model for Journal Bearings |
| 指導教授: |
梁勝明
Liang, Shen-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 頸軸承 、非牛頓 、潤滑 |
| 外文關鍵詞: | Non-Newtonian, Lubrication, Journal Bearing |
| 相關次數: | 點閱:97 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
軸承常見於機械裝置,在軸承系統的設計分析中,精確估算軸承性能參數是一項非常重要的工作,例如軸承負載量、摩擦力係數和離心角度等。由文獻中可知,頸軸承在牛頓潤滑己被充分研究,對於非牛頓潤滑,研究都集中在等溫層流和熱液動力層流(THD)領域,但目前對紊流潤滑領域,包括等溫或THD都還沒有充份研究。
研究目的以奈威爾-史托克方程式為基礎,發展非牛頓流熱液動力頸軸承模式,分析全包覆式無限寬頸軸承非牛頓對性能參數之影響。此模式以Shyu和Jeng發展的EGFLUM模式為基礎,壓力從容積流模式解得,速度和溫度由Legendre collocation方法求得,孔蝕效應由Elrod’s孔蝕演算法來處理,非牛頓流模式採用冪次模式。與Shyu和Jeng研究不同之處在於他們使用SIMPLE演算法解容積流方程式,而本研究是採用SIMPLER演算法。
從結果得知,軸承的性能參數在非牛頓型態是跟牛頓型態有明顯的差異,當冪次指數n大於1時,壓力、負載、摩擦係數會比牛頓流大,因為受到稠化性影響,當冪次指數n小於1時,受到稀化性影響,壓力、負載、摩擦係數會降低。
Bearings are usually used in many mechanical equipments. To design a bearing system, it is desirable to have accurate values of performance parameters such as the load capacity, friction coefficient and eccentricity angle. For the journal bearings with non-Newtonian lubricants, most researchers focused on the laminar isothermal and laminar thermohydrodynamic (THD) regimes. It is not fully understood for the turbulent isothermal and turbulent THD regimes.
The objectives of this study are to develop a non-Newtonian THD model for journal bearings based on the Navier-Stokes equations and to study the effects of non-Newtonian on the performance parameters for infinitely wide full journal bearings. The model is based on the EGFLUM model developed by Shyu and Jeng, in which the pressure is solved using the bulk-flow model and the velocity and temperature are solved using Legendre collocation method. Elrod's cavitation algorithm is implicated to model the effects of cavitation, and the power-law model is used to model the non-Newtonian fluid. In contrast to the study of Shyu and Jeng, who used SIMPLE algorithm to solve the bulk-flow equations, the SIMPLER algorithm is used in this study.
From the results, it is found that the values of the bearing performance parameters for the non-Newtonian fluids are significantly different from those for the Newtonian cases. When the power-law index n is greater than unity, the pressure, load capacity and friction coefficient will become larger than those for the Newtonian flow due to the shear thickening effects. When n is less than one, the shear thinning effects result in the decrease in the pressure, load capacity and friction coefficient.
1. Szeri, A. Z., (1987), “Some Extensions of the Lubrication Theory of Osborne Reynolds, ” ASME Journal of Tribology, Vol. 109, pp. 21-36
2. Schlichting, H., (1979), Boundary Layer Theory, 7th Ed., McGraw-Hill, New York. (Translated by Kestin, J.)
3. Pinkus, 1990, Thermal Aspects of Fluids Film Tribology, ASME. Press, New York.
4. Shyu, S. H., (1998), Ranges of Validity for the Reynolds Equation and the Bulk-flow Model for a Slider Bearing, Ph. D. Dissertation, The Pennsylvania State University.
5. Gross, W. A., Matsch, L. A., Castelli, V., Eshel, A., Vohr, J. H., and Wildmann, M., (1980), Fluid Film Lubrication, John Wiley & Sons, Inc., New York.
6. Shyu, S. H., (1998), Ranges of Validity, pp. 31-34, pp.38-40. Ph.D.
7. Cole, J. A., and Hughes, C. J., (1956), “Oil Flow and Film Extent in complete Journal Bearings,” Proc. Inst. Mech. Eng., 170, pp. 499-510.
8. Reynolds, O., (1886), “On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil,” Phil. Trans. Roy. Soc., Lond., Vol. 177, Part 1, pp. 157-234.
9. Hsiao, H.-S. and Hamrock, B. J., (1992), “A Complete Solution for Thermal Elastohydrodynamic Lubrication of Line Contacts Using Circular Non-Newtonian Fluid Model,” ASME Journal of Tribology, pp. 540-552.
10. Sheeja, D. and Prabhu, B. S., (1992), “Thermohydrodynamic Lubrication of Non-Newtonian Journal Bearings : Theory and Experiments,” Journal of Physics D:Applied Physics, Vol. 25, pp. 1706-1712.
11. Rodkiewicz, C. M. and Yang, P., (1995), “A Now-Newtonian TEHL Analysis of Tilting-Pad Bearings Subjected to Inlet Pressure Bulid-Up,” ASME Journal of Tribology, Vol. 117, pp. 461-467
12. Lin, J.-F. and Wang, L.-Y., (1990), “Thermohydrodynamic Analysis of Finite-Width, Partial-Arc Journal Bearings with Non-Newtonian Lubricants:Part II, ” Tribology International, Vol. 23, No. 3, pp. 211-216.
13. Sinha, P., and Prasad, D., (1995), “Lubrication of Rollers by power Law Fluids Considering Consistency-Variation with Pressure and Temperature,” Acta Mechanica, Vol. 111, pp. 223-239.
14. Shyu, S. H., Talmage, G., and Carpino, M., (2000), “Comparison of Lubrication Model for Plane Slider Bearings,” Tribology Transactions, Vol. 43, No. 1, pp. 74-81
15. Kacou, A., Rajagopal, K. R., and Szeri, A. Z., (1988), “A Thermohydrodynamic Analysis of Jouranl Bearings Lubricated by a Non-Newtonian Fluid,” ASME Jouranl of Tribology, Vol. 110, pp.414-420.
16. Shyu, S.-H., Jeng, Y._R., (2002), “An Efficient General Fluid-Film Lubrication Model for Plane Slider Bearings,” STLE Tribology Transactions, Vol. 45, pp. 161-168.
17. King, K. F., Taylor, C. M., (1997), “An Estimation of The Effect of Fluid Inertia on the Performance of the Plane Inclined Slider Thrust Bearing With Particular Regard to Turbulent Lubrication,” ASME Journal of Lubrication Techhnology, pp. 129-135.
18. Launder, B. E., Leschziner, M., (1978), “Flow in Finite-Width, Thrust Bearings Including Inertia Effects, I-Laminar Flow, II-Turbulent,” ASME Journal of Lubrication Technology, Vol. 100, pp. 330-345.
19. Elrod, H. G., (1991), “Efficient Numerical Methed of the Thermodynamics of Laminar Lubricating Films,” ASME Journal of Tribology, Vol. 113, pp.506-511.
20. Talmage, G., Carpino. M., (1997), “A Pseudospectral-Finite Difference Analysis of an Infiitely Wide Slider Bearing with Thermal and Inertia Effects,” Tribology Transactions, Vol. 40, No. 2, pp. 251-258.
21. Board, L., Fillon, M., and Frene, J., (1996), “Thermohydrodynamic Analyisi of Tilting-Pad Journal Bearings Operating in Turbulent Flow Regime,” ASME Journal of Tribology, Vol. 118, pp. 225-231.
22. Elord, H. G., Ng, C. W., (1967), “A Theory for Turbulent Fluid Films and Its Application to Bearing,” ASME Journal of Lubrication Technology, Vol. 113, pp. 346-362.
23. Yakhot, V., Orszag, S. A., and Yakhot, A., (1987), “Heat Transfer in Turbulent Fluid – Pipe flow,” International Journal of Heat and Mass Transfer, Vol. 30, No. 1, pp. 15-22.
24. Suganami, T., Szeri, A. Z., (1979), “A Thermohydrodynamic Analysis of Journal Bearing,” ASME Journal of Lubrication Technology, Vol. 101, pp. 21-27.
25. Safar, A., Szeri, A. Z., (1974), “Thermohydrodynamic Lubrication in Laminar and Turbulent Regimes,” ASME Journal of Lubrication Technology, Vol. 96, pp. 48-57.
26. Elrod, H. G., (1981), “A Cavitation Algorithm,” ASME Journal of Lubrication Technology, Vol. 103, pp. 267-276.
27. Patankar, S. V., (1980), Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., Washington, DC.
28. Yang, Z., San Andres, L., and Childs, D. W., (1993), “ Thermal Effects in Cryogenic Liquid Annular Seals – Part I. Theory and Approximate Solution,” ASME Journal of Tribology, Vol. 115, pp. 267-276.
29. Constantinescu, V. N., (1977), “Special Problems Concerning Lubrication Phenomena At Large Reynolds Numbers,” Proceedings of the 2nd Leeds-Lyon Symposium on Tribology, September 1975, Mechanical Engineering Publication Ltd., London, pp. 77-84.
30. Dien, I. K., Elrod, H. G., (1983), “A Generalized Steady-State Reynolds Equation for Non- Newtonian Fluid With Application to Journal Bearings,” ASME Journal of Lubrication Technology, Vol. 105, pp. 385-390.
31. Shaver, R. G., and Merrill, E. W., (1959), “Turbulent Flow of Pseudoplastic Polymer Solutions is Straight Cylindrical Tubes.” A.I.Ch.E. Journal.,Vol. 5, pp.181-188.
32. Hartnett, J. P., Kostic M., (1990), “Turbulent Friction Factor Correlations for Power Law Fluids in Circular and Non-Circular Channels.” International communications in heat and mass transfer, Vol. 17, pp. 59-65.
33. Hirs, G. G., (1973), “A Bulk-Flow Theory for Turbulence in Lubricant film,” ASME Journal of Lubrication Technology, Vol. 95, pp. 137-146.
34. Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., (1984), Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corp., Washington, DC.
35. Hirotsugu, H., (1991), “Recent Studies on Fluid Film Lubrication with Non-Newtonian Lubricants.” JSME International Journal Vol. 34, pp. 1-11.
36. Hashimoto, H., Mongkolwongrojn, M., Prabkaew, C., (1994), “Non-Newtonian Turbulent Lubrication Theory Based on Friction Law of Fluid,” Nippon Kikai GakkaiRonbunhu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, ol. 60, n571, p1006-1012.
37. 張啟城, (2002), “紊流形態熱液動力平板滑動軸承之性能參數研究,” 國立中正大 學碩士論文。