簡易檢索 / 詳目顯示

研究生: 羅瑞燕
Lo, Jui-Yen
論文名稱: 含雙色胺酸功能區氧化還原酶在調控血液細胞發展過程中所扮演的角色
The role of WW domain-containing oxidoreductase in regulating hematopoietic cell development
指導教授: 徐麗君
Hsu, Li-Jin
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 99
中文關鍵詞: 含雙色胺酸功能區氧化還原酶前驅細胞正常造血
外文關鍵詞: WW domain-containing oxidoreductase, Progenitor cells, Hematopoiesis
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類WWOX基因位在第16對染色體易脆裂的位置上,可轉錄產生「含雙色胺酸功能區氧化還原酶」(亦稱為WWOX,FOR or WOX1)的腫瘤抑制蛋白質。過去的研究指出,WWOX在有壓力的情況下,可能與調節細胞凋亡有關。在人類多種癌症也發現WWOX的表現量有降低的現象。令人驚訝的是,在我們自己建立的全身性剔除Wwox基因的小鼠周邊血液發現,血液細胞數量明顯比野生型及異合型小鼠減少許多,也在缺乏Wwox的小鼠骨髓發現,多種血液前驅細胞的數量都有出現減少的情形,我們更確定了,缺乏Wwox會造成小鼠骨髓中前驅細胞的增殖情形(proliferation)明顯降低。我們也由實驗發現,可能因為缺乏Wwox,進而導致前驅細胞出現內生性的缺陷(intrinsic defect),因此影響正常造血。總結以上的結果,我們證明在正常造血過程中,腫瘤抑制蛋白質WWOX是重要的調節者。
    關鍵字:含雙色胺酸功能區氧化還原酶、前驅細胞、正常造血

    Human WWOX gene resides in the common fragile site FRA16D on chromosome 16q23.3–24.1 and encodes a candidate tumor suppressor WW domain-containing oxidoreductase (designated WWOX, FOR or WOX1). Previous studies have suggested that WWOX mediates cell apoptosis upon stress responses. Downregulation of WWOX protein expression has been found in many types of human cancers. Strikingly, significantly reduced numbers of hematopoietic cells were examined in the periphery of our generated Wwox-/- mice as compared with wild-type and heterozygous littermates. A pronounced defect in hematopoiesis was observed in Wwox-/- bone marrow. We determined that WWOX deficiency caused significantly reduced cell proliferation in mouse bone marrow. We demonstrated that, compared with wild-type controls, Wwox-/- bone marrow cells have an intrinsic defect during hematopoiesis. Altogether, our findings reveal a novel function of tumor suppressor WWOX as a crucial regulator in hematopoiesis.
    Key word: WW domain-containing oxidoreductase, Progenitor cells, Hematopoiesis

    中文摘要 I Abstract III Acknowledgement V Chapter 1 Introduction 1 1-1 Hematopoiesis 1 1-1-1 BM microenvironment 2 1-1-2 Granulopoiesis and erythropoiesis 2 1-1-3 Lymphocyte development 3 1-2 WW domain-containing oxidoreductase (WWOX) 4 1-2-1 Protein structure of WWOX 4 1-2-2 WWOX functions as a tumor suppressor and proapoptotic protein 5 1-2-3 WWOX acts beyond a tumor suppressor 5 1-2-4 The role of WWOX in the inflammatory response 6 1-3 Forkhead box O (FoxO) protein 7 1-3-1 FoxO family proteins 7 1-3-2 The role of FoxO family proteins in hematopoiesis 8 1-4 Graft-versus-host disease (GvHD) 9 Chapter 2 Materials and Methods 10 A-1 Cell lines 10 A-2 Reagents and kits 10 A-3 Antibodies 12 A-4 shRNA clones (from RNAi core, Academia Sinica, Taiwan) 14 A-5 Forward and reverse PCR primers 14 A-6 Consumables 15 A-7 Instruments 15 B-1 Cell culture 16 B-2 Flow cytometric analysis 16 B-3 Cell sorting 17 B-4 In vivo BrdU incorporation assay 17 B-5 Cell apoptosis assay 17 B-6 Colony formation assays 18 B-7 OP9 co-culture system 18 B-8 RNA extraction 18 B-9 Reverse transcription (RT)-polymerase chain reaction (PCR) and real-time PCR 19 B-10 Microarray assay 21 B-11 Protein extraction 22 B-12 Quantification and adjustment of protein content 22 B-13 Western blotting 23 B-14 Plasmid DNA purification 23 B-15 Transfection of cells by electroporation 24 B-16 Preparation of the lentiviral shRNA-knockdown cells 25 B-17 Immunofluorescence staining 25 B-18 Coimmunoprecipitation (CO-IP) 26 B-19 Murine GvHD model 26 B-20 Statistical analysis 27 Chapter 3 Results 28 3-1 Defective hematopoiesis in Wwox-/- mice 28 3-2 Wwox deficiency reduces HSC pools in mouse bone marrow 28 3-3 WWOX regulates hematopoietic progenitor cell proliferation during hematopoiesis 29 3-4 Myeloid lineage development is intact in vitro 30 3-5 Wwox deficiency causes developmental failure in the lymphoid lineage 31 3-6 WWOX controls the expression of transcription factors FoxO1 and FoxO3a 32 3-7 Wwox-/- BM cells induce more severe GvHD in the recipient mice 34 3-8 The absence of WWOX expression in donor cells leads to enhanced systemic GvHD in NOD.SCID recipient mice 35 3-9 Increased inflammatory cytokine secretion and tissue damages are shown in the recipients transferred with Wwox-/- BM cells 36 Chapter 4 Discussion 38 4-1 The role of WWOX in hematopoiesis 38 4-2 The role of WWOX in erythrocyte development 38 4-3 The mechanism of how WWOX regulates FoxO proteins 39 4-4 WWOX may regulate BM stem cell microenvironment to support hematopoiesis 40 4-5 The role of WWOX in GvHD 41 4-6 WWOX may regulate IL-6 production 41 Chapter 5 Conclusion 43 References 44 Curriculum vitae 98

    1. Smith C. 2003. Hematopoietic stem cells and hematopoiesis. Cancer Control 10: 9-16
    2. Weissman IL. 2000. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100: 157-68
    3. Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL. 1997. Identification of a lineage of multipotent hematopoietic progenitors. Development 124: 1929-39
    4. Hinge A, Filippi MD. 2016. Deconstructing the complexity of TGFβ signaling in hematopoietic stem cells: quiescence and beyond. Curr Stem Cell Rep 2: 388-97
    5. Miyata Y, Liu Y, Jankovic V, Sashida G, Lee JM, Shieh JH, Naoe T, Moore M, Nimer SD. 2010. Cyclin C regulates human hematopoietic stem/progenitor cell quiescence. Stem Cells 28: 308-17
    6. Yoshida T, Hazan I, Zhang J, Ng SY, Naito T, Snippert HJ, Heller EJ, Qi X, Lawton LN, Williams CJ, Georgopoulos K. 2008. The role of the chromatin remodeler Mi-2beta in hematopoietic stem cell self-renewal and multilineage differentiation. Genes Dev 22: 1174-89
    7. Attar EC, Scadden DT. 2004. Regulation of hematopoietic stem cell growth. Leukemia 18: 1760-8
    8. Wilson A, Trumpp A. 2006. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6: 93-106
    9. Seshadri M, Qu CK. 2016. Microenvironmental regulation of hematopoietic stem cells and its implications in leukemogenesis. Curr Opin Hematol 23: 339-45
    10. Zhang P, Zhang C, Li J, Han J, Liu X, Yang H. 2019. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther 10: 327-
    11. Will B, Vogler TO, Bartholdy B, Garrett-Bakelman F, Mayer J, Barreyro L, Pandolfi A, Todorova TI, Okoye-Okafor UC, Stanley RF, Bhagat TD, Verma A, Figueroa ME, Melnick A, Roth M, Steidl U. 2013. Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment. Nat Immunol 14: 437-45
    12. Frelin C, Herrington R, Janmohamed S, Barbara M, Tran G, Paige CJ, Benveniste P, Zuniga-Pflucker JC, Souabni A, Busslinger M, Iscove NN. 2013. GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nat Immunol 14: 1037-44
    13. Bigarella CL, Li J, Rimmele P, Liang R, Sobol RW, Ghaffari S. 2017. FOXO3 transcription factor is essential for protecting hematopoietic stem and progenitor cells from oxidative DNA damage. J Biol Chem 292: 3005-15
    14. Huang J, Zhang Y, Bersenev A, O'Brien WT, Tong W, Emerson SG, Klein PS. 2009. Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice. J Clin Invest 119: 3519-29
    15. Abbas HA, Maccio DR, Coskun S, Jackson JG, Hazen AL, Sills TM, You MJ, Hirschi KK, Lozano G. 2010. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell 7: 606-17
    16. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, Shima H, Johnson RS, Hirao A, Suematsu M, Suda T. 2010. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7: 391-402
    17. Arcangeli ML, Frontera V, Bardin F, Obrados E, Adams S, Chabannon C, Schiff C, Mancini SJ, Adams RH, Aurrand-Lions M. 2011. JAM-B regulates maintenance of hematopoietic stem cells in the bone marrow. Blood 118: 4609-19
    18. Chen Y, Yu M, Dai X, Zogg M, Wen R, Weiler H, Wang D. 2011. Critical role for Gimap5 in the survival of mouse hematopoietic stem and progenitor cells. J Exp Med 208: 923-35
    19. Moran-Crusio K, Reavie LB, Aifantis I. 2012. Regulation of hematopoietic stem cell fate by the ubiquitin proteasome system. Trends Immunol 33: 357-63
    20. Thompson BJ, Jankovic V, Gao J, Buonamici S, Vest A, Lee JM, Zavadil J, Nimer SD, Aifantis I. 2008. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J Exp Med 205: 1395-408
    21. Rathinam C, Matesic LE, Flavell RA. 2011. The E3 ligase Itch is a negative regulator of the homeostasis and function of hematopoietic stem cells. Nat Immunol 12: 399-407
    22. Birbrair A, Frenette PS. 2016. Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 1370: 82-96
    23. Zhao M, Li L. 2015. Regulation of hematopoietic stem cells in the niche. Sci China Life Sci 58: 1209-15
    24. Kunisaki Y. 2015. The hematopoietic stem cell niche. Rinsho Ketsueki 56: 1888-93
    25. Morrison SJ, Scadden DT. 2014. The bone marrow niche for haematopoietic stem cells. Nature 505: 327-34
    26. Galán-Díez M, Cuesta-Domínguez Á, Kousteni S. 2018. The bone marrow microenvironment in health and myeloid malignancy. CSH Perspect Med 8: a031328
    27. Ding L, Morrison SJ. 2013. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495: 231-5
    28. Sugiyama T, Kohara H, Noda M, Nagasawa T. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977-88
    29. Ding L, Saunders TL, Enikolopov G, Morrison SJ. 2012. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481: 457-62
    30. Taichman RS, Emerson SG. 1994. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179: 1677-82
    31. Lawrence SM, Corriden R, Nizet V. 2018. The ontogeny of a neutrophil: mechanisms of granulopoiesis and homeostasis. Microbiol Mol Biol Rev 82: e00057-17
    32. Dzierzak E, Philipsen S. 2013. Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med 3: a011601
    33. Wang W, Horner DN, Chen WL, Zandstra PW, Audet J. 2008. Synergy between erythropoietin and stem cell factor during erythropoiesis can be quantitatively described without co-signaling effects. Biotechnol Bioeng 99: 1261-72
    34. Haase VH. 2010. Hypoxic regulation of erythropoiesis and iron metabolism. Am J Physiol-Renal 299: F1-F13
    35. Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, Ghaffari S. 2007. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest 117: 2133-44
    36. Liang R, Camprecios G, Kou Y, McGrath K, Nowak R, Catherman S, Bigarella CL, Rimmele P, Zhang X, Gnanapragasam MN, Bieker JJ, Papatsenko D, Ma'ayan A, Bresnick E, Fowler V, Palis J, Ghaffari S. 2015. A systems approach identifies essential FoxO3 functions at key steps of terminal erythropoiesis. PLoS Genet 11: e1005526
    37. Lai AY, Kondo M. 2008. T and B lymphocyte differentiation from hematopoietic stem cell. Semin Immunol 20: 207-12
    38. Anderson MS, Su MA. 2011. Aire and T cell development. Curr Opin Immunol 23: 198-206
    39. Chang NS, Pratt N, Heath J, Schultz L, Sleve D, Carey GB, Zevotek N. 2001. Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J Biol Chem 276: 3361-70
    40. Chang NS, Hsu LJ, Lin YS, Lai FJ, Sheu HM. 2007. WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med 13: 12-22
    41. Hong Q, Hsu LJ, Schultz L, Pratt N, Mattison J, Chang NS. 2007. Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response. BMC Mol Biol 8: 50
    42. Sudol M, Chen HI, Bougeret C, Einbond A, Bork P. 1995. Characterization of a novel protein-binding module--the WW domain. FEBS Lett 369: 67-71
    43. Aqeilan RI, Pekarsky Y, Herrero JJ, Palamarchuk A, Letofsky J, Druck T, Trapasso F, Han SY, Melino G, Huebner K, Croce CM. 2004. Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc Natl Acad Sci U S A 101: 4401-6
    44. Aqeilan RI, Palamarchuk A, Weigel RJ, Herrero JJ, Pekarsky Y, Croce CM. 2004. Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2gamma transcription factor. Cancer Res 64: 8256-61
    45. Aqeilan RI, Donati V, Palamarchuk A, Trapasso F, Kaou M, Pekarsky Y, Sudol M, Croce CM. 2005. WW domain-containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function. Cancer Res 65: 6764-72
    46. Aqeilan RI, Donati V, Gaudio E, Nicoloso MS, Sundvall M, Korhonen A, Lundin J, Isola J, Sudol M, Joensuu H, Croce CM, Elenius K. 2007. Association of Wwox with ErbB4 in breast cancer. Cancer Res 67: 9330-6
    47. Ludes-Meyers JH, Kil H, Bednarek AK, Drake J, Bedford MT, Aldaz CM. 2004. WWOX binds the specific proline-rich ligand PPXY: identification of candidate interacting proteins. Oncogene 23: 5049-55
    48. Gaudio E, Palamarchuk A, Palumbo T, Trapasso F, Pekarsky Y, Croce CM, Aqeilan RI. 2006. Physical association with WWOX suppresses c-Jun transcriptional activity. Cancer Res 66: 11585-9
    49. Bouteille N, Driouch K, Hage PE, Sin S, Formstecher E, Camonis J, Lidereau R, Lallemand F. 2009. Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. Oncogene 28: 2569-80
    50. Abu-Odeh M, Bar-Mag T, Huang H, Kim T, Salah Z, Abdeen SK, Sudol M, Reichmann D, Sidhu S, Kim PM, Aqeilan RI. 2014. Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks. J Biol Chem 289: 8865-80
    51. Chang NS, Doherty J, Ensign A, Schultz L, Hsu LJ, Hong Q. 2005. WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J Biol Chem 280: 43100-8
    52. Chang NS, Doherty J, Ensign A. 2003. JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J Biol Chem 278: 9195-202
    53. Schuchardt BJ, Bhat V, Mikles DC, McDonald CB, Sudol M, Farooq A. 2013. Molecular origin of the binding of WWOX tumor suppressor to ErbB4 receptor tyrosine kinase. Biochemistry 52: 9223-36
    54. Sze CI, Su M, Pugazhenthi S, Jambal P, Hsu LJ, Heath J, Schultz L, Chang NS. 2004. Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer's disease. J Biol Chem 279: 30498-506
    55. Wang HY, Juo LI, Lin YT, Hsiao M, Lin JT, Tsai CH, Tzeng YH, Chuang YC, Chang NS, Yang CN, Lu PJ. 2012. WW domain-containing oxidoreductase promotes neuronal differentiation via negative regulation of glycogen synthase kinase 3beta. Cell Death Differ 19: 1049-59
    56. Li J, Liu J, Ren Y, Yang J, Liu P. 2014. Common chromosomal fragile site gene WWOX in metabolic disorders and tumors. Int J Biol Sci 10: 142-8
    57. Lo JY, Chou YT, Lai FJ, Hsu LJ. 2015. Regulation of cell signaling and apoptosis by tumor suppressor WWOX. Exp Biol Med (Maywood) 240: 383-91
    58. Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM. 2000. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 60: 2140-5
    59. Guler G, Uner A, Guler N, Han SY, Iliopoulos D, Hauck WW, McCue P, Huebner K. 2004. The fragile genes FHIT and WWOX are inactivated coordinately in invasive breast carcinoma. Cancer 100: 1605-14
    60. Paige AJ, Taylor KJ, Taylor C, Hillier SG, Farrington S, Scott D, Porteous DJ, Smyth JF, Gabra H, Watson JE. 2001. WWOX: a candidate tumor suppressor gene involved in multiple tumor types. Proc Natl Acad Sci U S A 98: 11417-22
    61. Chang N-S, Doherty J, Ensign A, Lewis J, Heath J, Schultz L, Chen S-T, Oppermann U. 2003. Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. Biochem Pharmacol 66: 1347-54
    62. Mahajan NP, Whang YE, Mohler JL, Earp HS. 2005. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res 65: 10514-23
    63. Lin D, Cui Z, Kong L, Cheng F, Xu J, Lan F. 2013. p73 participates in WWOX-mediated apoptosis in leukemia cells. Int J Mol Med 31: 849-54
    64. Lin HP, Chang JY, Lin SR, Lee MH, Huang SS, Hsu LJ, Chang NS. 2011. Identification of an in vivo MEK/WOX1 complex as a master switch for apoptosis in T cell leukemia. Genes Cancer 2: 550-62
    65. Chen X, Zhang H, Li P, Yang Z, Qin L, Mo W. 2013. Gene expression of WWOX, FHIT and p73 in acute lymphoblastic leukemia. Oncol Lett 6: 963-9
    66. Nunez MI, Ludes-Meyers J, Aldaz CM. 2006. WWOX protein expression in normal human tissues. J Mol Histol 37: 115-25
    67. Chen ST, Chuang JI, Wang JP, Tsai MS, Li H, Chang NS. 2004. Expression of WW domain-containing oxidoreductase WOX1 in the developing murine nervous system. Neuroscience 124: 831-9
    68. Suzuki H, Katayama K, Takenaka M, Amakasu K, Saito K, Suzuki K. 2009. A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy. Genes Brain Behav 8: 650-60
    69. Tochigi Y, Takamatsu Y, Nakane J, Nakai R, Katayama K, Suzuki H. 2019. Loss of Wwox causes defective development of cerebral cortex with hypomyelination in a rat model of lethal dwarfism with epilepsy. Int J Mol Sci 20
    70. Yang C, Zhang Y, Song Z, Yi Z, Li F. 2019. Novel compound heterozygous mutations in the WWOX gene cause early infantile epileptic encephalopathy. Int J Dev Neurosci 79: 45-8
    71. Gribaa M, Salih M, Anheim M, Lagier-Tourenne C, H'Mida D, Drouot N, Mohamed A, Elmalik S, Kabiraj M, Al-Rayess M, Almubarak M, Bétard C, Goebel H, Koenig M. 2007. A new form of childhood onset, autosomal recessive spinocerebellar ataxia and epilepsy is localized at 16q21-q23. Brain 130: 1921-8
    72. Cheng YY, Chou YT, Lai FJ, Jan MS, Chang TH, Jou IM, Chen PS, Lo JY, Huang SS, Chang NS, Liou YT, Hsu PC, Cheng HC, Lin YS, Hsu LJ. 2020. Wwox deficiency leads to neurodevelopmental and degenerative neuropathies and glycogen synthase kinase 3beta-mediated epileptic seizure activity in mice. Acta Neuropathol Commun 8: 6
    73. Ludes-Meyers JH, Kil H, Parker-Thornburg J, Kusewitt DF, Bedford MT, Aldaz CM. 2009. Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene. PLoS One 4: e7775
    74. Aqeilan RI, Hassan MQ, de Bruin A, Hagan JP, Volinia S, Palumbo T, Hussain S, Lee SH, Gaur T, Stein GS, Lian JB, Croce CM. 2008. The WWOX tumor suppressor is essential for postnatal survival and normal bone metabolism. J Biol Chem 283: 21629-39
    75. Singla S, Chen J, Sethuraman S, Sysol JR, Gampa A, Zhao S, Machado RF. 2017. Loss of lung WWOX expression causes neutrophilic inflammation. Am J Physiol Lung Cell Mol Physiol 312: L903-l11
    76. Visschedijk MC, Spekhorst LM, Cheng SC, van Loo ES, Jansen BHD, Blokzijl T, Kil H, de Jong DJ, Pierik M, Maljaars J, van der Woude CJ, van Bodegraven AA, Oldenburg B, Löwenberg M, Nieuwenhuijs VB, Imhann F, van Sommeren S, Alberts R, Xavier RJ, Dijkstra G, Nico Faber K, Aldaz CM, Weersma RK, Festen EAM. 2018. Genomic and expression analyses identify a disease-modifying variant for fibrostenotic crohn's disease. J Crohns Colitis 12: 582-8
    77. Severson C, Hafler DA. 2010. T-cells in multiple sclerosis. Results Probl Cell Differ 51: 75-98
    78. Accili D, Arden KC. 2004. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117: 421-6
    79. Munekata K, Sakamoto K. 2009. Forkhead transcription factor FoxO1 is essential for adipocyte differentiation. In Vitro Cell Dev Biol Anim 45: 642-51
    80. Ouyang W, Beckett O, Ma Q, Paik JH, DePinho RA, Li MO. 2010. FoxO proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol 11: 618-27
    81. Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, Perry CJ, Cui G, Li MO, Kaech SM. 2014. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity 41: 802-14
    82. Kahn AJ. 2015. FoxO3 and related transcription factors in development, aging, and exceptional longevity. J Gerontol A Biol Sci Med Sci 70: 421-5
    83. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegue E, DePinho RA, Gilliland DG. 2007. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128: 325-39
    84. Daitoku H, Fukamizu A. 2007. FoxO transcription factors in the regulatory networks of longevity. J Biochem 141: 769-74
    85. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich MF, Lim R, Zimmermann B, Aspalter IM, Franco CA, Boettger T, Braun T, Fruttiger M, Rajewsky K, Keller C, Brüning JC, Gerhardt H, Carmeliet P, Potente M. 2016. FoxO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529: 216-20
    86. Schäffner I, Minakaki G, Khan MA, Balta EA, Schlötzer-Schrehardt U, Schwarz TJ, Beckervordersandforth R, Winner B, Webb AE, DePinho RA, Paik J, Wurst W, Klucken J, Lie DC. 2018. FoxO function is essential for maintenance of autophagic flux and neuronal morphogenesis in adult neurogenesis. Neuron 99: 1188-203.e6
    87. van der Horst A, Burgering BM. 2007. Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8: 440-50
    88. Xie Q, Chen J, Yuan Z. 2012. Post-translational regulation of FoxO. Acta Biochim Biophys Sin (Shanghai) 44: 897-901
    89. Brown AK, Webb AE. 2018. Regulation of FoxO factors in mammalian cells. Curr Top Dev Biol 127: 165-92
    90. Huang H, Tindall DJ. 2011. Regulation of FoxO protein stability via ubiquitination and proteasome degradation. Biochim Biophys Acta 1813: 1961-4
    91. Vogt PK, Jiang H, Aoki M. 2005. Triple layer control: phosphorylation, acetylation and ubiquitination of FoxO proteins. Cell Cycle 4: 908-13
    92. Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S, Nawaz Z, Shimojima T, Wang H, Yang Y, Shen Z, Zhang Y, Zhang X, Nicosia SV, Zhang Y, Pledger JW, Chen J, Bai W. 2009. MDM2 acts downstream of p53 as an E3 ligase to promote FoxO ubiquitination and degradation. J Biol Chem 284: 13987-4000
    93. Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV, Dalal SN, DeCaprio JA, Greenberg ME, Yaffe MB. 2002. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol 156: 817-28
    94. Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ. 2005. Skp2 inhibits FoxO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A 102: 1649-54
    95. Ushmorov A, Wirth T. 2018. FoxO in B-cell lymphopoiesis and B cell neoplasia. Semin Cancer Biol 50: 132-41
    96. Amin RH, Schlissel MS. 2008. FoxO1 directly regulates the transcription of recombination-activating genes during B cell development. Nat Immunol 9: 613-22
    97. Kerdiles YM, Stone EL, Beisner DR, McGargill MA, Ch'en IL, Stockmann C, Katayama CD, Hedrick SM. 2010. Foxo transcription factors control regulatory T cell development and function. Immunity 33: 890-904
    98. Ouyang W, Beckett O, Flavell RA, Li MO. 2009. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30: 358-71
    99. Tothova Z, Gilliland DG. 2007. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1: 140-52
    100. Menon V, Ghaffari S. 2018. Transcription factors FoxO in the regulation of homeostatic hematopoiesis. Curr Opin Hematol 25: 290-8
    101. Liang R, Rimmele P, Bigarella CL, Yalcin S, Ghaffari S. 2016. Evidence for AKT-independent regulation of FoxO1 and FoxO3 in haematopoietic stem and progenitor cells. Cell Cycle 15: 861-7
    102. Li H, Matte-Martone C, Tan HS, Venkatesan S, McNiff J, Demetris AJ, Jain D, Lakkis F, Rothstein D, Shlomchik WD. 2011. Graft-versus-host disease is independent of innate signaling pathways triggered by pathogens in host hematopoietic cells. J Immunol 186: 230-41
    103. Hill GR, Crawford JM, Cooke KR, Brinson YS, Pan L, Ferrara JL. 1997. Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 90: 3204-13
    104. Ghimire S, Weber D, Mavin E, Wang XN, Dickinson AM, Holler E. 2017. Pathophysiology of GvHD and other HSCT-related major complications. Front Immunol 8: 79
    105. Kumar S, Mohammadpour H, Cao X. 2017. Targeting cytokines in GvHD therapy. J Immunol Res Ther 2: 90-9
    106. Hülsdünker J, Zeiser R. 2015. Insights into the pathogenesis of GvHD: what mice can teach us about man. Tissue Antigens 85: 2-9
    107. Kaplan DH, Anderson BE, McNiff JM, Jain D, Shlomchik MJ, Shlomchik WD. 2004. Target antigens determine graft-versus-host disease phenotype. J Immunol 173: 5467-75
    108. 2014. Chapter 6 - The major histocompatibility complex. In Primer to the Immune Response (Second Edition), ed. TW Mak, ME Saunders, BD Jett, pp. 143-59. Boston: Academic Cell
    109. Liang R, Rimmelé P, Bigarella CL, Yalcin S, Ghaffari S. 2016. Evidence for AKT-independent regulation of FOXO1 and FOXO3 in haematopoietic stem and progenitor cells. Cell Cycle 15: 861-7
    110. Xiao N, Eto D, Elly C, Peng G, Crotty S, Liu YC. 2014. The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells. Nat Immunol 15: 657-66
    111. Cromvik J, Johnsson M, Vaht K, Johansson JE, Wennerås C. 2014. Eosinophils in the blood of hematopoietic stem cell transplanted patients are activated and have different molecular marker profiles in acute and chronic graft-versus-host disease. Immun Inflamm Dis 2: 99-113
    112. Koyama M, Hill GR. 2019. The primacy of gastrointestinal tract antigen-presenting cells in lethal graft-versus-host disease. Blood 134: 2139-48
    113. Liang L, Peng Y, Zhang J, Zhang Y, Roy M, Han X, Xiao X, Sun S, Liu H, Nie L, Kuang Y, Zhu Z, Deng J, Xia Y, Sankaran VG, Hillyer CD, Mohandas N, Ye M, An X, Liu J. 2019. Deubiquitylase USP7 regulates human terminal erythroid differentiation by stabilizing GATA1. Haematologica 104: 2178-87
    114. Kiefmann R, Rifkind JM, Nagababu E, Bhattacharya J. 2008. Red blood cells induce hypoxic lung inflammation. Blood 111: 5205-14
    115. Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C. 1989. Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol (1985) 66: 1785-8
    116. Bakker WJ, Harris IS, Mak TW. 2007. FoxO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Molecular Cell 28: 941-53
    117. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, Matsuoka S, Miyamoto T, Ito K, Ohmura M, Chen C, Hosokawa K, Nakauchi H, Nakayama K, Nakayama KI, Harada M, Motoyama N, Suda T, Hirao A. 2007. FoxO3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1: 101-12
    118. Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers WR. 2000. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol 20: 8969-82
    119. Rathinam C, Thien CB, Langdon WY, Gu H, Flavell RA. 2008. The E3 ubiquitin ligase c-Cbl restricts development and functions of hematopoietic stem cells. Genes Dev 22: 992-7
    120. Crane GM, Jeffery E, Morrison SJ. 2017. Adult haematopoietic stem cell niches. Nat Rev Immunol 17: 573-90
    121. Hill GR, Ferrara JL. 2000. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood 95: 2754-9
    122. Tanaka T, Narazaki M, Kishimoto T. 2014. IL-6 in inflammation, immunity, and disease. CSH Perspect Biol 6: a016295-a
    123. Tawara I, Koyama M, Liu C, Toubai T, Thomas D, Evers R, Chockley P, Nieves E, Sun Y, Lowler KP, Malter C, Nishimoto N, Hill GR, Reddy P. 2011. Interleukin-6 modulates graft-versus-host responses after experimental allogeneic bone marrow transplantation. Clinical cancer research : an official journal of the American Association for Cancer Research 17: 77-88
    124. Narazaki M, Kishimoto T. 2018. The two-faced cytokine IL-6 in host defense and diseases. Int J Mol Sci 19: 3528
    125. Garbers C, Heink S, Korn T, Rose-John S. 2018. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat Rev Drug Discov 17: 395-412

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE