| 研究生: |
陳詠晴 Chen, Yung-Ching |
|---|---|
| 論文名稱: |
導眠靜抑制間質幹細胞之軟骨分化 Midazolam inhibits chondrogenic differentiation in human mesenchymal stem cell |
| 指導教授: |
王仰高
Wang, Yang-Kao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 導眠靜 、軟骨分化 、周邊苯二氮受體 |
| 外文關鍵詞: | Midazolam, chondrogenesis, peripheral benzodiazepine receptor |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
導眠靜為一種苯二氮類藥物,是目前普遍常用於手術、鎮靜及治療失眠的藥物,這種苯二氮類藥物主要是透過GABA去抑制神經的傳導作用。在過去的研究發現,當懷孕初期的婦女如果服用導眠靜將會導致新生兒出現先天性泌尿道畸形、唇顎裂、或是因為成骨發育不全而有侏儒症的風險。並且最近的研究更證實了,導眠靜會抑制成人骨質間質幹細胞硬骨的分化。由於大部分脊椎動物的骨盆、上下肢的骨骼,都是由軟骨內骨形成的這個模式而分化而來的,成熟肥大的軟骨細胞內會開始產生骨化反應而分化成骨細胞在由骨內骨形成的方式形成硬骨。因此我們想探討在體外實驗中,導眠靜對於人類骨髓間質幹細胞的軟骨分化是否會造成影響。首先我們先透過使用包含乙型轉移生長因子誘導軟骨分化的培養液,以建立軟骨化的系統。結果顯示出不論是使用微顆粒狀的培養方式或是使用平面高密度的培養方式,乙型轉移生長因子都能成功的促進軟骨分化。我們接著使用含乙型轉移生長因子之促進軟骨分化的培養液與導眠靜同時處理細胞,以觀察導眠靜對於人類骨髓間質幹細胞的軟骨分化的影響。除了以阿爾新藍(Alcian blue)染軟骨的黏多醣(glycosaminoglycans)外,我們也利用 RT-PCR及西方轉漬法觀察 SOX9、聚蛋白聚醣(aggrecan)或是第二型膠原蛋白的表現。結果發現導眠靜確實會抑制乙型轉移生長因子誘發之軟骨的分化能力。接著我們想探討分子的機轉,發現無論是使用中樞或是周邊苯二氮類接受體拮抗劑之後,都可以部分回復導眠靜抑制軟骨分化的能力,同時我們也以核醣核酸干擾技術將周邊苯二氮受體去做敲減 (knockdown),與上述會得到類似的結果,顯示導眠靜會透過周邊苯二氮類接受體以影響人類骨髓間質幹細胞的軟骨分化的能力。
在未來的研究,我們希望能夠更進一步去探討導眠靜是如何透過分子的機轉去抑制軟骨的分化能力,這項研究或許能夠證明並解釋為何導眠靜會引發肌肉骨骼系統相關的先天性畸形。
Midazolam, a benzodiazepine derivative, is widely used for sedation and surgery. Benzodiazepines enhance neural inhibition through modulation of gamma-aminobutyric acid receptor. Previous studies have demonstrated that Midazolam is associated with increased risk of congenital malformations, such as dwarfism when used in early pregnancy. Recent study demonstrated that Midazolam negatively regulates osteogenic differentiation in human bone marrow-derived mesenchymal stem cells. Given the hypertrophic chondrocytes is able to differentiate to osteoblast and osteocytes and contribute to endochondral bone formation, the effect of Midazolam on the chondrogenesis remains unclear. In the present study, we applied a human mesenchymal stem cell line, the KP cell line to serve as an in vitro model to study the effect of Midazolam on chondrogenesis. We first successfully set up an in vitro chondrogenic model by using TGF--driven, chemically-defined induction medium. Our results showed that we were able to induce chondrogenesis either in micromass culture or 2D high density culture. Treatment of Midazolam inhibited chondrogenesis, which was examined by the Alcian blue staining, as well as the expression of chondrogenic markers, such as Sox9, aggrecan and type II collagen. Inhibition of Midazolam by peripheral benzodiazepine receptor (PBR) antagonist or small interfering RNA could partially rescue Midazolam’s inhibitory effects on chondrogenesis. In addition, Midazolam was also found to suppress TGF-β-induced Smad3 phosphorylation. This study may provide a possible explanation on how Midazolam induces congenital malformations of musculoskeletal system.
Abdi, R., Fiorina, P., Adra, C.N., Atkinson, M., and Sayegh, M.H. (2008). Immunomodulation by Mesenchymal Stem Cells : A Potential Therapeutic Strategy for Type 1 Diabetes. Diabetes 57, 1759-1767.
Akhurst, R.J., and Hata, A. (2012). Targeting the TGFbeta signalling pathway in disease. Nature reviews Drug discovery 11, 790-811.
Akiyama, H., Chaboissier, M.C., Martin, J.F., Schedl, A., and de Crombrugghe, B. (2002). The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes & development 16, 2813-2828.
Anholt, R.R., De Souza, E.B., Oster-Granite, M.L., and Snyder, S.H. (1985). Peripheral-type benzodiazepine receptors: autoradiographic localization in whole-body sections of neonatal rats. J Pharmacol Exp Ther 233, 517-526.
Atack, J.R. (2005). The benzodiazepine binding site of GABA(A) receptors as a target for the development of novel anxiolytics. Expert opinion on investigational drugs 14, 601-618.
Augello, A., and De Bari, C. (2010). The Regulation of Differentiation in Mesenchymal Stem Cells. HUMAN GENE THERAPY 21, 1226-1238.
Bae, J.S., Han, H.S., Youn, D.H., Carter, J.E., Modo, M., Schuchman, E.H., and Jin, H.K. (2007). Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells 25, 1307-1316.
Barry, F., Boynton, R.E., Liu, B., and Murphy, J.M. (2001). Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Experimental cell research 268, 189-200.
Bianco, P., and Robey, P.G. (2001). Stem cells in tissue engineering. Nature 414, 118-121.
Bickford, P.C.B., Lori (2000). Benzodiazepine modulation of GABAergic responses is intact in the cerebellum of aged F344 rats. Neuroscience Letters 291, 187-190.
Borton, A.J., Frederick, J.P., Datto, M.B., Wang, X.F., and Weinstein, R.S. (2001). The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 16, 1754-1764.
Braestrup, C., and Squires, R.F. (1977). Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proceedings of the National Academy of Sciences of the United States of America 74, 3805-3809.
Buttar, H.S., and Moffatt, J.H. (1983). Pre- and postnatal development of rats following concomitant intrauterine exposure to propoxyphene and chlordiazepoxide. Neurobehavioral toxicology and teratology 5, 549-556.
Campos-Xavier, B., Saraiva, J.M., Savarirayan, R., Verloes, A., Feingold, J., Faivre, L., Munnich, A., Le Merrer, M., and Cormier-Daire, V. (2001). Phenotypic variability at the TGF-beta1 locus in Camurati-Engelmann disease. Human genetics 109, 653-658.
Cannon, R.O., 3rd (1998). Role of nitric oxide in cardiovascular disease: focus on the endothelium. Clinical chemistry 44, 1809-1819.
Carmel, I.F., Fuad A. Leschiner, Svetlana Scherübl, Hans Weisinger, Gary Gavish, Moshe (1999). Peripheral-type benzodiazepine receptors in the regulation of proliferation of MCF-7 human breast carcinoma cell line. Biochemical Pharmacology 58, 273-278.
Casellas, P., Galiegue, S., and Basile, A.S. (2002). Peripheral benzodiazepine receptors and mitochondrial function. Neurochemistry international 40, 475-486.
Chen, G., Deng, C., and Li, Y.P. (2012). TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8, 272-288.
Chen, W.H., Lai, M.T., Wu, A.T., Wu, C.C., Gelovani, J.G., Lin, C.T., Hung, S.C., Chiu, W.T., and Deng, W.P. (2009). In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes. Arthritis and rheumatism 60, 450-459.
Cheng, A., Hardingham, T.E., and Kimber, S.J. (2014). Generating cartilage repair from pluripotent stem cells. Tissue engineering Part B, Reviews 20, 257-266.
Cheung, C.W., Irwin, M.G., Chiu, W.K., and Ying, C.L.A. (2008). A study to assess the value of bispectral analysis in intravenous sedation with midazolam during third molar surgery under local anaesthesia. Anaesthesia 63, 1302-1308.
Correa, D., Somoza, R.A., Lin, P., Greenberg, S., Rom, E., Duesler, L., Welter, J.F., Yayon, A., and Caplan, A.I. (2015). Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 23, 443-453.
Crane, J.L., and Cao, X. (2014). Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. The Journal of clinical investigation 124, 466-472.
Crane, J.L.C., X. (2014). Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. The Journal of clinical investigation 124, 466-472.
Cui, D.R., Wang, L., Jiang, W., Qi, A.H., Zhou, Q.H., and Zhang, X.L. (2013). Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-κB/p53 signaling pathway. Neuroscience 246, 117-132.
Davies, M. (2003). The role of GABA(A) receptors in mediating the effects of alcohol in the central nervous system. Journal of Psychiatry and Neuroscience 28, 263-274.
Deck, G., Nadkarni, N., Montouris, G., and Lovett, A. (2015). Congenital malformations in infants exposed to antiepileptic medications in utero at Boston Medical Center from 2003 to 2010. Epilepsy & behavior : E&B 51, 166-169.
Derynck, R., and Zhang, Y.E. (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425, 577-584.
Dolovich, L.R., Addis, A., Vaillancourt, J.M., Power, J.D., Koren, G., and Einarson, T.R. (1998). Benzodiazepine use in pregnancy and major malformations or oral cleft: meta-analysis of cohort and case-control studies. BMJ 317, 839-843.
Erlebacher, A., Filvaroff, E.H., Gitelman, S.E., and Derynck, R. (1995). Toward a molecular understanding of skeletal development. Cell 80, 371-378.
Friedenstein, A.J., Chailakhyan, R.K., Latsinik, N.V., Panasyuk, A.F., and Keiliss-Borok, I.V. (1974). Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17, 331-340.
Furumatsu, T., Tsuda, M., Taniguchi, N., Tajima, Y., and Asahara, H. (2005). Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. The Journal of biological chemistry 280, 8343-8350.
Gao, L., McBeath, R., and Chen, C.S. (2010). Stem Cell Shape Regulates a Chondrogenic Versus Myogenic Fate Through Rac1 and N-Cadherin. STEM CELLS 28, 564-572.
Greenfield, L.J., Jr. (2013). Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure 22, 589-600.
Griffin, C.E., Kaye, A.M., Bueno, Franklin Rivera Kaye, and Alan, D. (2013). Benzodiazepine Pharmacology and Central Nervous System–Mediated Effects. The Ochsner Journal 13, 214-223.
Gronroos, E., Kingston, I.J., Ramachandran, A., Randall, R.A., Vizan, P., and Hill, C.S. (2012). Transforming growth factor beta inhibits bone morphogenetic protein-induced transcription through novel phosphorylated Smad1/5-Smad3 complexes. Molecular and cellular biology 32, 2904-2916.
Haleem-Smith, H., Calderon, R., Song, Y., Tuan, R.S., and Chen, F.H. (2012). Cartilage oligomeric matrix protein enhances matrix assembly during chondrogenesis of human mesenchymal stem cells. Journal of cellular biochemistry 113, 1245-1252.
Herrera, M.B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M.C., Bussolati, B., and Camussi, G. (2006). Isolation and characterization of a stem cell population from adult human liver. Stem Cells 24, 2840-2850.
Hung, S.C., Yang, D.M., Chang, C.F., Lin, R.J., Wang, J.S., Low-Tone Ho, L., and Yang, W.K. (2004). Immortalization without neoplastic transformation of human mesenchymal stem cells by transduction with HPV16 E6/E7 genes. Int J Cancer 110, 313-319.
Jaiswal, R.K., Jaiswal, N., Bruder, S.P., Mbalaviele, G., Marshak, D.R., and Pittenger, M.F. (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. The Journal of biological chemistry 275, 9645-9652.
Jarvinen, L., Badri, L., Wettlaufer, S., Ohtsuka, T., Standiford, T.J., Toews, G.B., Pinsky, D.J., Peters-Golden, M., and Lama, V.N. (2008). Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. Journal of immunology (Baltimore, Md : 1950) 181, 4389-4396.
Joo, H.K., Oh, S.C., Cho, E.J., Park, K.S., Lee, J.Y., Lee, E.J., Lee, S.K., Kim, H.S., Park, J.B., and Jeon, B.H. (2009). Midazolam inhibits tumor necrosis factor-alpha-induced endothelial activation: involvement of the peripheral benzodiazepine receptor. Anesthesiology 110, 106-112.
Kam, W.W., Meikle, S.R., Zhou, H., Zheng, Y., Blair, J.M., Seibel, M., Dunstan, C.R., and Banati, R.B. (2012). The 18 kDa translocator protein (peripheral benzodiazepine receptor) expression in the bone of normal, osteoprotegerin or low calcium diet treated mice. PloS one 7, e30623.
Kang, S., Bennett, C.N., Gerin, I., Rapp, L.A., Hankenson, K.D., and Macdougald, O.A. (2007). Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. The Journal of biological chemistry 282, 14515-14524.
Kanto, J.H. (1985). Midazolam: the first water-soluble benzodiazepine. Pharmacology, pharmacokinetics and efficacy in insomnia and anesthesia. Pharmacotherapy 5, 138-155.
Keller, B., Yang, T., Chen, Y., Munivez, E., Bertin, T., Zabel, B., and Lee, B. (2011). Interaction of TGFbeta and BMP signaling pathways during chondrogenesis. PloS one 6, e16421.
Krasowski, M.D., Jenkins, A., Flood, P., Kung, A.Y., Hopfinger, A.J., and Harrison, N.L. (2001). General Anesthetic Potencies of a Series of Propofol Analogs Correlate with Potency for Potentiation of γ-Aminobutyric Acid (GABA) Current at the GABAA Receptor but Not with Lipid Solubility. Journal of Pharmacology and Experimental Therapeutics 297, 338-351.
Kronenberg, H.M. (2003). Developmental regulation of the growth plate. Nature 423, 332-336.
Krueger, K.E. (1995). Molecular and functional properties of mitochondrial benzodiazepine receptors. Biochim Biophys Acta 1241, 453-470.
Kumar, A., Muzik, O., Chugani, D., Chakraborty, P., and Chugani, H.T. (2010). PET-derived biodistribution and dosimetry of the benzodiazepine receptor-binding radioligand (11)C-(R)-PK11195 in children and adults. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 51, 139-144.
Kundu, A.K., and Putnam, A.J. (2006). Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun 347, 347-357.
Kuo, C.K., and Tuan, R.S. (2008). Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue engineering Part A 14, 1615-1627.
Laegreid, L. (1990). Clinical observations in children after prenatal benzodiazepine exposure. Dev Pharmacol Ther 15, 186-188.
Laegreid, L., Olegård, R., Conradi, N., Hagberg, G., Wahlström, J., and Abrahamsson, L. (1990). Congenital malformations and maternal consumption of benzodiazepines: a case-control study. Developmental Medicine & Child Neurology 32, 432-441.
Laganà, A.S., Triolo, O., D'Amico, V., Cartella, S.M., Sofo, V., Salmeri, F.M., Vrtačnik., Bokal, E., and Spina, E. (2016). Management of women with epilepsy: from preconception to post-partum. Arch Gynecol Obstet 293, 493-503.
Lee, D.H., Kang, S.K., Lee, R.H., Ryu, J.M., Park, H.Y., Choi, H.S., Bae, Y.C., Suh, K.T., Kim, Y.K., and Jung, J.S. (2004). Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells. J Cell Physiol 198, 91-99.
Maor, G., Hochberg, Z., von der Mark, K., Heinegard, D., and Silbermann, M. (1989). Human growth hormone enhances chondrogenesis and osteogenesis in a tissue culture system of chondroprogenitor cells. Endocrinology 125, 1239-1245.
Marinucci, L., Balloni, S., Bodo, M., Carinci, F., Pezzetti, F., Stabellini, G., Conte, C., and Lumare, E. (2009). Patterns of some extracellular matrix gene expression are similar in cells from cleft lip-palate patients and in human palatal fibroblasts exposed to diazepam in culture. Toxicology 257, 10-16.
Matsumoto, T., Ogata, M., Koga, K., and Shigematsu, A. (1994). Effect of peripheral benzodiazepine receptor ligands on lipopolysaccharide-induced tumor necrosis factor activity in thioglycolate-treated mice. Antimicrobial agents and chemotherapy 38, 812-816.
McElhatton, P.R. (1994). The effects of benzodiazepine use during pregnancy and lactation. Reproductive toxicology (Elmsford, NY) 8, 461-475.
Miljkovic, N.D., Cooper, G.M., and Marra, K.G. (2008). Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 16, 1121-1130.
Mino, Y., Mizusawa, H., and Shiota, K. (1994). Effects of anticonvulsant drugs on fetal mouse palates cultured in vitro. Reproductive toxicology (Elmsford, NY) 8, 225-230.
Mizuta, K., Osawa, Y., Mizuta, F., Xu, D., and Emala, C.W. (2008). Functional expression of GABAB receptors in airway epithelium. American journal of respiratory cell and molecular biology 39, 296-304.
Mohler, H., and Okada, T. (1977). Benzodiazepine receptor: demonstration in the central nervous system. Science 198, 849-851.
Nikizad, H., Yon, J.H., Carter, L.B., and Jevtovic-Todorovic, V. (2007). Early exposure to general anesthesia causes significant neuronal deletion in the developing rat brain. Annals of the New York Academy of Sciences 1122, 69-82.
Olkkola, K.T., and Ahonen, J. (2008). Midazolam and other benzodiazepines. Handbook of experimental pharmacology, 335-360.
Papadopoulos, V., Baraldi, M., Guilarte, T.R., Knudsen, T.B., Lacapere, J.J., Lindemann, P., Norenberg, M.D., Nutt, D., Weizman, A., Zhang, M.R., et al. (2006). Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends in pharmacological sciences 27, 402-409.
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147.
Qiu, Z., Li, M., He, J., Liu, X., Zhang, G., Lai, S., Ma, J., Zeng, J., Li, Y., Wu, H., et al. (2015). Translocator protein mediates the anxiolytic and antidepressant effects of midazolam. Pharmacology, biochemistry, and behavior 139, 77-83.
Qu-Petersen, Z., Deasy, B., Jankowski, R., Ikezawa, M., Cummins, J., Pruchnic, R., Mytinger, J., Cao, B., Gates, C., Wernig, A., et al. (2002). Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. The Journal of cell biology 157, 851-864.
Quarto, R., Campanile, G., Cancedda, R., and Dozin, B. (1992). Thyroid hormone, insulin, and glucocorticoids are sufficient to support chondrocyte differentiation to hypertrophy: a serum-free analysis. The Journal of cell biology 119, 989-995.
Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., and Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of immunology (Baltimore, Md : 1950) 180, 2581-2587.
Schnaper, H.W., Hayashida, T., Hubchak, S.C., and Poncelet, A.C. (2003). TGF-beta signal transduction and mesangial cell fibrogenesis. American journal of physiology Renal physiology 284, F243-252.
Shannon, M., Albers, G., Burkhart, K., Liebelt, E., Kelley, M., McCubbin, M.M., Hoffman, J., and Massarella, J. (1997). Safety and efficacy of flumazenil in the reversal of benzodiazepine-induced conscious sedation. The Flumazenil Pediatric Study Group. The Journal of pediatrics 131, 582-586.
Shao, J.S.A., Z. A. Lai, C. F. Cheng, S. L. Cai, J. Huang, E. Behrmann, A. Towler, D. A. (2007). Vascular Bmp Msx2 Wnt signaling and oxidative stress in arterial calcification. Annals of the New York Academy of Sciences 1117, 40-50.
Sieghart, W. (1995). Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev 47, 181-234.
Skolnick, P., and Paul, S.M. (1982). Benzodiazepine receptors in the central nervous system. International review of neurobiology 23, 103-140.
Studeny, M., Marini, F.C., Dembinski, J.L., Zompetta, C., Cabreira-Hansen, M., Bekele, B.N., Champlin, R.E., and Andreeff, M. (2004). Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. Journal of the National Cancer Institute 96, 1593-1603.
Susheela, M., and Rao, M.S. (1983). Genotoxicity of chlordiazepoxide hydrochloride on the bone-marrow cells of Swiss mice. Toxicology letters 18, 45-48.
Swinyard, E.A., and Castellion, A.W. (1966). Anticonvulsant properties of some benzodiazepines. J Pharmacol Exp Ther 151, 369-375.
Takahata, Y., Hinoi, E., Takarada, T., Nakamura, Y., Ogawa, S., and Yoneda, Y. (2012). Positive regulation by gamma-aminobutyric acid B receptor subunit-1 of chondrogenesis through acceleration of nuclear translocation of activating transcription factor-4. The Journal of biological chemistry 287, 33293-33303.
Tallman, J.F., Paul, S.M., Skolnick, P., and Gallager, D.W. (1980). Receptors for the age of anxiety: pharmacology of the benzodiazepines. Science 207, 274-281.
Tamama, K., Sen, C.K., and Wells, A. (2008). Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem cells and development 17, 897-908.
Tamayama, T., Maemura, K., Kanbara, K., Hayasaki, H., Yabumoto, Y., Yuasa, M., and Watanabe, M. (2005). Expression of GABA(A) and GABA(B) receptors in rat growth plate chondrocytes: activation of the GABA receptors promotes proliferation of mouse chondrogenic ATDC5 cells. Mol Cell Biochem 273, 117-126.
Tan, X., Weng, T., Zhang, J., Wang, J., Li, W., Wan, H., Lan, Y., Cheng, X., Hou, N., Liu, H., et al. (2007). Smad4 is required for maintaining normal murine postnatal bone homeostasis. Journal of cell science 120, 2162-2170.
Tobias., Joseph, D., Leder., and Marc. (2011). Procedural sedation: A review of sedative agents, monitoring, and management of complications. Saudi Journal of Anaesthesia 5, 395-410.
Tropel, P., Noel, D., Platet, N., Legrand, P., Benabid, A.L., and Berger, F. (2004). Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Experimental cell research 295, 395-406.
Tsai CC, C.C., Liu HC, Lee YT, Wang HW, Hou LT, Hung SC. (2010). Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines. J Biomed Sci 17.
Tsai, C.C., Chen, C.L., Liu, H.C., Lee, Y.T., Wang, H.W., Hou, L.T., and Hung, S.C. (2010). Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines. Journal of biomedical science 17, 64.
Tuli, R., Tuli, S., Nandi, S., Huang, X., Manner, P.A., Hozack, W.J., Danielson, K.G., Hall, D.J., and Tuan, R.S. (2003). Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. The Journal of biological chemistry 278, 41227-41236.
Uccelli, A., Moretta, L., and Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nat Rev Immunol 8, 726-736.
Vellasamy, S., Sandrasaigaran, P., Vidyadaran, S., George, E., and Ramasamy, R. (2012). Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue. World Journal of Stem Cells 4, 53-61.
Wagner, E.F., and Karsenty, G. (2001). Genetic control of skeletal development. Current opinion in genetics & development 11, 527-532.
Waldvogel, H.J., and Faull, R.L. (2015). The diversity of GABA(A) receptor subunit distribution in the normal and Huntington's disease human brain. Advances in pharmacology (San Diego, Calif) 73, 223-264.
Walter, R.B., Pirga, J.L., Cronk, M.R., Mayer, S., Appelbaum, F.R., and Banker, D.E. (2005). PK11195, a peripheral benzodiazepine receptor (pBR) ligand, broadly blocks drug efflux to chemosensitize leukemia and myeloma cells by a pBR-independent, direct transporter-modulating mechanism. Blood 106, 3584-3593.
Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C., Wei, H.M., Guo, Y.J., Fu, Y.S., Lai, M.C., and Chen, C.C. (2004). Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22, 1330-1337.
Woods, A., Wang, G., and Beier, F. (2005). RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. The Journal of biological chemistry 280, 11626-11634.
Wu, S., Yang, W., and De Luca, F. (2015). Insulin-Like Growth Factor-Independent Effects of Growth Hormone on Growth Plate Chondrogenesis and Longitudinal Bone Growth. Endocrinology 156, 2541-2551.
Yang, L., Tsang., Kwok Yeung Tang, Hoi Ching Chan, Danny Cheah, and Kathryn, S.E. (2014). Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proceedings of the National Academy of Sciences of the United States of America 111, 12097-12102.
Zhang, J., Tan, X., Li, W., Wang, Y., Wang, J., Cheng, X., and Yang, X. (2005). Smad4 is required for the normal organization of the cartilage growth plate. Developmental biology 284, 311-322.
Zhang, L.D., C. J. Binkley, C. Li, G. Uhler, M. D. Logsdon, C. D. Simeone, D. M. (2004). A transforming growth factor beta-induced Smad3/Smad4 complex directly activates protein kinase A. Molecular and cellular biology 24, 2169-2180.
Zhang, T., Shao, H., Xu, K., Kuang, L., Chen, R., and Xiu, H. (2014). Midazolam suppresses osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. European Review for Medical and Pharmacological Sciences 18, 1411-1418.
Zhong, L., Huang, X., Karperien, M., and Post, J.N. (2015). The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes. International journal of molecular sciences 16, 19225-19247.
Zhou, X.v.d.M., Klaus Henry, Stephen Norton, William Adams, Henry de Crombrugghe, Benoit (2014). Chondrocytes Transdifferentiate into Osteoblasts in Endochondral Bone during Development, Postnatal Growth and Fracture Healing in Mice. PLoS Genetics 10, e1004820.
校內:2021-12-31公開