簡易檢索 / 詳目顯示

研究生: 柯佳宏
Ke, Chia-Hung
論文名稱: 利用奈米粒子表面電漿增加矽太陽能電池吸收率
Plasmonic absorption enhancement of Si solar cell by nanoparticles embedded active layer
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 56
中文關鍵詞: 太陽能電池表面電漿
外文關鍵詞: solar cell, surface plasma
相關次數: 點閱:65下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以有限元素法討論銀奈米粒子週期結構嵌入非晶矽太陽能電池吸收層中,利用金屬粒子之侷域表面電漿來改善非晶矽在能隙時吸收低落與增加整體太陽能電池的吸收,結果證明銀奈米粒子由侷域表面電漿引起的強烈散射增強了光學吸收。我們發現整體相較於薄膜太陽能電池有約9%的增益,且在能隙附近提高了40%的效益。本論文也討論吸收層最佳化的結構,以三角晶格結構較正方晶格為佳。

    This thesis numerically investigated the effect of localized surface plasmon (LSP) induced by the embedded Ag nanoparticles (NPs) in the active layer on the absorption efficiency of an entire solar cell and, especially, near the band edge of amorphous-Si (a-Si):The finite element method is used to calculate the energy absorption of the solar cell. Results showed that enhanced optical absorption results from strong scattering by LSP resonance on the embedded Ag NPs. The present solar cell structure has approximate 9% enhancement of the absorption efficiency relative to thin-film solar cell. The absorption enhancement is about 40% near the band edge. The optimal design of nanoparticles structure for active layer is also discussed; The performance of a hexagonal structure is proved better than that of a cubic structure.

    目錄 Abstract IV 表目錄 VIII 圖目錄 IX 符號說明 XI 第一章 1 緒論 1 1-1研究動機與背景 1 1-1-1太陽能電池簡介 1 1-1-2薄膜式矽基太陽能電池 8 1-1-3微奈米結構應用於光伏材料 9 1-2文獻回顧 12 1-3本文架構 14 第二章 15 數值模擬 15 2-1太陽能頻譜 15 2-2太陽能電池吸收層效率評估 18 2-2-1非晶矽材料光學特性 18 2-2-2理論最大效率(Ultimate Efficiency) 18 2-3吸收率計算 20 2-3-1基本電磁學理論 20 2-3-2有限元素法(finite element method, FEM) 21 2-3-3完美匹配層(perfectly matched layers) 25 2-3-4邊界條件(boundary conditions) 28 2-3-5太陽能電池吸收層模擬 29 第三章 32 奈米金屬粒子嵌入薄膜吸收層 32 3-1幾何模型建立與文獻對照 32 3-2銀奈米粒子嵌入介電材料 34 3-3計算吸收層嵌入銀奈米粒子之吸收率 36 3-2改變吸收層嵌入銀奈米粒子數目 40 3-3三角晶格與正方晶格之比較 46 第四章 49 綜合討論與未來展望 49 4-1綜合討論 49 參考文獻 51 自述 56

    參考文獻
    1. M. Yamaguchi and C. Amano (1985), “Efficiency calculations of thin-film GaAs solar cells on Si substrates,”Journal of Applied Physics. Vol. 58, pp.3601-3606.
    2. K. Barnham, J. Connolly, P. Griffin, G. Haarpaintner, J. Nelson, E. Tsui, A. Zachariou, J. Osborne, C. Button, G. Hill, M. Hopkinson, M. Pate, J. Roberts, and T. Foxon (1996), “Voltage enhancement in quantum well solar cells,”Journal of Applied Physics. Vol. 80, pp.1201-1206.
    3. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N.H. Karam (2007), “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Applied Physics Letters. Vol. 90, 183516.
    4. B. O'Regan and M. Gratzel (1991), “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature. Vol. 353, pp.737-740.
    5. E. Yablonovitch ,and G.D. Cody (1982), “Intensity enhancement in textured optical sheets for solar cells,” IEEE Transactions on Electron Devices, Vol.ED-29, NO.2, pp.300-305.
    6. Harry A. Atwater and Albert Polman (2010), “Plasmonics for improved photovoltaic devices,” Nature Materials. Vol. 9, pp. 205-213.
    7. Yu. A. Akimov, W. S. Koh , and K. Ostrikov (2009), “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,”Optics Express. Vol. 17, pp. 10195-10205.
    8. Yuriy A. Akimov and Wee Shing Koh (2011), “Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells,” Plasmonics. Vol. 6, pp.155-161.
    9. Qilin Gu (2010), “Plasmonic metallic nanostructures for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells,” J. Phys. D: Appl. Phys. Vol. 43, 465101.
    10. Vladimir Kochergin, Lauren Neely, Chin-Yu Jao, and Hans D. Robinson (2011),“Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,”Applied Physics Letters. Vol. 98, 133305.
    11. Jyh-Yang Wang, Fu-Ji Tsai, Jeng-Jie Huang, Cheng-Yen Chen, Nola Li, Yean-Woei Kiang, and C.C. Yang (2010),“Enhancing InGaN-based solae cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,”Optics Express. Vol. 18, pp.2682-2694.
    12. Jung-Yong Lee and Peter Peumans (2010),“The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,”Optics Express. Vol. 18, pp.10078-10087.
    13. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz and A. Polman (2010),“A silicon-based electrical source of surface plasmon polaritons,”Nature Mater. Vol. 9, pp.21-25.
    14. Stephan Fahr, Carsten Rockstuhl, and Falk Lederer (2009),“Metallic nanoparticles as intermediate reflectors in tandem solar cells,”Appl. Phys. Lett. Vol. 95, 121105.
    15. H. R. Stuart, and D. G. Hall (1996),“Absorption enhancement in silicon-on-insulator waveguides using metal island films,”Appl. Phys. Lett. Vol. 69, pp.2327-2329.
    16. D. M. Schaadt, B. Feng, and E. T. Yu (2005),“Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,”Appl. Phys. Lett. Vol. 86, 063106.
    17. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green (2007),“Surface plasmon enhanced silicon solar cells,”J. Appl. Phys. Vol. 101, pp.093105-093108.
    18. K. R. Catchpole and A. Polman (2008),“Design priciples for particle plasmon enhanced solar cells,”Appl. Phys. Lett. Vol. 93, 191113.
    19. James R. Nagel and Michael A. Scarpulla (2010),“Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,”Optics Express. Vol. 18, pp.A139-A146.
    20. B. P. Rand, P. Peumans, and S. R. Forrest (2004),“Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,”J. Appl. Phys. Vol. 96, pp.7519-7526.
    21. V. G. Kravets, S. Neubeck, and A. N. Grigorenko (2010), “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in dielectric matrix,”Phys. Rev. B. Vol. 81, 165401.
    22. V. G. Kravets and A. N. Grigorenko (2010),“Retinal light trapping in textured photovoltaic cells,”Appl. Phys. Lett. Vol. 97, 143701.
    23. Jonathan Grandidier, Dennis M. Callahan, Jeremy N. Munday, and Harry A. Atwater (2011),“Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres,” Adv. Mater. Vol. 23, pp.1272-1276.
    24. Jinfeng Zhu, Mei Xue, Huajun Shen, Zhe Wu, Seongku Kim, Jyh-Jier Ho, Aram Hassani-Afshar, Baoqing Zeng, and Kang L. Wang (2011), “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanosphers,” Appl. Phys. Lett. Vol. 98, 151110.
    25. M.A. Green, K. Emery, Y. Hisikawa, and W. Warta (2010), “Solar Cell Efficiency Tables (Version 35),” Progress in Photovoltaics: Research and Applications. Vol. 18, pp.144-150.
    26. http://www.kson.com.tw/chinese/study_23-6.htm
    27. M.A. Green (2003), Third Generation Photovoltaics: Advanced Solar Energy Conversion, Berlin :Springer-Verlag.
    28. ASTM, “Reference Solar Spectral Irradiance: Air Mass 1.5 Spectra,” http://rredc.nrel.gov/solar/spectra/am1.5/
    29. W. Shockley, and H.J. Queisser (1961), “Detailed balance limit of efficiency of p-n junction solar cells,” Journal of Applied Physics, Vol. 32, pp.510-519.
    30. B.M. Kayes and H.A. Atwater (2005), “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” Journal of Applied Physics, Vol.97, 114302.
    31. J.P. Berenger , ”A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, Vol.114, No.2, pp.185-200.
    32. Z.S. Sacks, D.M. Kingsland, R. Lee, and J.F. Lee (1995), “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Transactions on Antennas and Propagation, Vol. AP-43, pp.1460-1463.
    33. J. Jin (2002),The finite element method in electromagnetic(2nd ed.), New York:John Wiley & Sons, Inc.
    34. J.M. Lin and W.C. Chew (1996), ”Combining PML and ABC for finite element analysis of scattering problems,” Microwave and Optical Technology Letters, Vol.12, pp.192-197.
    35. J.P. Berenger (1996), “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, Vol.127, NO.2, pp.363-379.
    36. Yu. A. Akimov and W. S. Koh (2010),“Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology. Vol. 21, 235201.
    37. 皮托科技股份有限公司(COMSOL Multiphysics代理商), http://www.pitotech.com.tw/
    38. K. R. Catchpole and A. Polman (2008), “Plasmonic solar cells,” Optics Express. Vol. 16, pp.21793-21800.
    39. C. F. Bohren and D. R. Huffman (1983), Absorption and scattering of light by small particles, New York: Wiley-Interscience.
    40. 吳民耀、劉威志(2006),「表面電漿子理論與模擬」,物理雙月刊,第二十八卷第二期,頁486。

    下載圖示 校內:2012-08-08公開
    校外:2013-08-08公開
    QR CODE