| 研究生: |
朱慧 Zhu, Hui |
|---|---|
| 論文名稱: |
建築實踐中的循環創新:廢物再利用與碳減排的設計研究 Circular Innovations in Architectural Practice: Case Studies on Waste Reuse and Carbon Reduction |
| 指導教授: |
劉舜仁
Liou, Shuenn-Ren 陳必晟 Chen, Pi-Cheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 循環經濟 、可逆式設計 、精準盤點 、建材再利用 、碳減排 |
| 外文關鍵詞: | Circular Economy, Reversible Design, Accurate Inventory, Reuse of Building Materials, Carbon Emission Reduction |
| 相關次數: | 點閱:102 下載:32 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在建築實踐領域,面對全球氣候變遷與資源短缺的挑戰,採納循環經濟(Circular Economy, CE)理念導向的設計與建造方法顯得尤為關鍵。在整個建築循環創新實踐方法中,現存建築建材存量的精準盤點與新建建築的可逆式設計,有利於減少營建廢棄物和蘊含碳的產生,對溫室氣體減排具有明顯的影響。目前相關的研究工作主要集中在建築物運營階段的節能技術,對建材在前端生產以及後端回收利用時的環境影響評估不足。本研究基於CE理念在建築實踐中的應用研究,系統性地思考建築物的循環創新實踐方法。從建材選擇、構造方式和建築拆解三個部分,探討了實現循環建築策略的有效方法和應用案例。
為驗證提出方法的有效性,本研究基於上游創新與下游創新兩大策略,分別對新建建築物與即將到達使用年限的現存建築物進行了實踐性研究,並建立了材料再利用的框架。在設計之初和拆解之前,精確盤點了建築材料的總量,以及核算了各階段的溫室氣體排放量。
研究結果表明,從建造或拆解之初考慮循環材料與模組化構造,以及預設正確的拆解方式,不僅能有效提高材料的再利用率,同時也大幅降低了碳排放與廢棄物的產生。具體數據顯示,循環展亭(Circular Pavilion)在材料使用與碳排放方面表現優於傳統建築,其溫室氣體排放量僅為混凝土展亭(Concrete Pavilion)的34%,是鋼結構展亭(Steel Pavilion)的3.5%。此外,針對臺灣當代文化實驗場(TCCLab)的案例研究亦顯示,相較於傳統的建築材料存量估算方法,本研究方法在材料總量計算的精準度提高了37.59%,明顯展現了循環設計方法在提升建築材料計算準確性與再利用率方面的重要作用。
總結而言,本研究基於CE理念,為建築行業提供了一種促進資源再利用與碳減排的有效方法,指明了廢棄資源重新進入生產與製造環節的可能性,為建築行業的環境負面影響轉型提供了理論與實踐的基礎。未來研究將進一步探討循環創新在建築領域的廣泛應用,期望為實現循環城市與可持續發展目標貢獻力量。
Facing the challenges of worldwide climate alteration and resource scarcity, adopting circular economy principles in architectural design and construction is crucial for mitigating environmental impacts. This study focuses on circular innovation in architecture, emphasizing the importance of accurately inventorying building materials and implementing reversible designs to reduce construction waste and embedded carbon. While existing research concentrates on energy efficiency during a building's operational phase, this work expands the scope to include the ecological consequences of material manufacturing and recycling at the end of its lifecycle.
Through practical research on new and aging buildings, this study establishes a framework for material reuse, emphasizing precise material inventory and greenhouse gas emission calculations from the outset. The findings demonstrate that prioritizing circular materials and modular construction significantly enhances material reuse and reduces carbon emissions. For instance, the Circular Pavilion's greenhouse gas emissions were markedly lower than those of traditional Concrete and Steel Pavilions. A case study on the Taiwan Contemporary Culture Lab (TCCLab) further validates the method's effectiveness, showing a 37.59% improvement in the accuracy of material volume calculations compared to traditional estimates.
This study highlights how principles of the circular economy can support the reuse of resources and decrease carbon emissions in the construction sector, offering a pathway towards transforming the industry's environmental footprint. It lays the theoretical and practical groundwork for wider application of circular innovation in architecture, contributing to sustainable urban development and the achievement of circular city goals.
中文參考文獻(依筆劃排序)
1. 北京中建協認證中心有限公司,中碳數字實驗室(2022)。中國建築行業碳達峰碳中和研究報告。JCC CERTIFICATION。http://www.jccchina.com/UserFiles/upload/file/20230324/20230324093145556.pdf
2. 艾倫·麥克阿瑟基金會(2019)。上游創新。艾倫·麥克阿瑟基金會。https://archive.ellenmacarthurfoundation.org/assets/downloads/Upstream-Innovation-Book-Chinese-201209.pdf
3. 臺灣土木技師公會(2018)。空總文化實驗室基地內建築物耐震能力詳細評估工作報告書。臺北市政府文化局。
4. 陳必晟(2019)。108年度空總文化實驗場建築都市採礦潛力評估。財團法人臺灣生活美學基金會。
5. 黃育徵 (2017)。循環經濟。天下雜誌。ISBN:9789863982296
6. 黃榮堯,莊威龍(1997)。建築拆除污染及廢棄物產生現況與調查架構研究。內政部建築研究所。https://www.abri.gov.tw/News_Content_Table.aspx?n=807&s=37982
7. 重慶大學(2022)。中國城鄉建設領域碳排放系列研究報告。中國建築節能協會,建築能耗與碳排放數據委員會。https://13115299.s21i.faiusr.com/61/1/ABUIABA9GAAggtGOoQYouKDLvwY.pdf
8. 張又升(2002)。建築物生命週期二氧化碳減量評估。[博士論文,國立成功大學]。https://hdl.handle.net/11296/zwv5mh
9. 張崑振(2015)。103年度空軍司令部舊址文史資料調查總結報告書。臺北市政府文化局。
10. 新華社(2021.04.18)。中美應對氣候危機聯合聲明。新華網。http://www.xinhuanet.com/world/2021-04/18/c_1127342714.htm
11. 劉舜仁(2018)。循環經濟架構下的建築設計。臺灣建築學會會刊雜誌,91,50-59。https://www.bureausla.nl/wp-content/uploads/2018/11/Architectural-Institute-of-Taiwan-article-PP.pdf
12. 劉舜仁(2019)。108年度空總當代文化實驗場「循環之城」主題合作計畫。財團法人臺灣生活美學基金會。
13. GB17691-2018(2018)。重型柴油車污染物排放限值及測量方法(中國第六階段)。中華人民共和國生態環境部。
14. GB20891-2014(2014)。非道路移動機械用柴油機排氣污染物排放限值及測量方法(中國第三、第四階段)。中華人民共和國生態環境部。
15. GB/T 26408-2020(2000)。混凝土攪拌運輸車。中華人民共和國國家市場監督管理總局、中國國家標準化管理委員會。
英文參考文獻(依字母排序)
1. ARUP. (1996). How nature can inspire us to create more resilient buildings. ARUP. https://www.arup.com/projects/eastgate.
2. Akhtar, A., & Sarmah, A.K. (2018). Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, 186, pp. 262-281. https://doi.org/10.1016/j.jclepro.2018.03.085.
3. Brand, S. (1994). How Buildings Learn: What Happens after They’re Built. Viking, New York, NY, USA.
4. Burdova, E. K., Budajova, J., Mesaros, P., & Vilcekova, S. (2023). Potential for reducing the carbon footprint of buildings. Engineering Proceedings, 57(1), 6. https://doi.org/10.3390/engproc2023057006.
5. Baynes, T. M., Crawford,R. H., Schinabeck, J., Bontinck, P. -A., Stephan, A., Wiedmann, T., Lenzen, M., Kenway, S., Yu, M., Teh, S. H., Lane, J., Geschke, A., Fry, J., & Chen, G. W. (2018). The Australian Industrial Ecology Virtual Laboratory and multi-scale assessment of buildings and construction. Energy and Buildings, 164(1), pp. 14 - 20. https://doi.org/10.1016/j.enbuild.2017.12.056
6. Bobba, S., Carrara, S., Huisman, J., Mathieux, F., & Pavel, C. (2020). Critical raw materials for strategic technologies and sectors in the EU—A foresight study. EU: Luxembourg. doi: 10.2873/58081
7. Bragança, L., Mateus, R., & Koukkari, H. (2010). Building Sustainability Assessment. Sustainability, 2, 2010-2023. https://doi.org/10.3390/su2072010
8. Bherwani, H., Nair, M., Niwalkar, A., Dhanya Balachandran, D., & Kumar, R. (2022). Application of circular economy framework for reducing the impacts of climate change: A case study from India on the evaluation of carbon and materials footprint nexus. Energy Nexus, 5, 100047. https://doi.org/10.1016/j.nexus.2022.100047.
9. Baldassarre, B., Schepers, M., Bocken, N., Cuppen, E., Korevaar, G., & Calabretta, G. (2019). Industrial Symbiosis: towards a design process for eco-industrial clusters by integrating Circular Economy and Industrial Ecology perspectives. Journal of Cleaner Production, 216, 446-460. https://doi.org/10.1016/j.jclepro.2019.01.091
10. Circular Amsterdam. (2016). A vision and action agenda for the city and metropolitan area. Circular Economy. https://drive.google.com/file/d/14lCZjVBJ59n2szucombGUHIQj2MUsMEZ/view
11. Circular Buiksloterham. (2014). Circular Buiksloterham: Turning Amsterdam’s post-industrial district into a circular and sustainable neighbourhood. Metabolic. https://www.metabolic.nl/projects/circular-buiksloterham/
12. Circle Economy. (2024). The Circular Gap Report. A circular economy to live within the safe limits of the planet. Circle Economy Foundation. https://drive.google.com/file/d/15droT_mBFK6Kkd1aO5kPzYFUqLdul2qM/view
13. Circle Economy. (2019). The Circular Gap Report. Circle Economy. https://shiftingparadigms.nl/wp-content/uploads/2019/01/CGR-2.0-report-final-reprint-web-20190326.pdf
14. Chrystalla, C., Angeliki, K, Demetris, N., & Paris, A. F. (2015). Life cycle assessment of concrete manufacturing in small isolated states: the case of Cyprus. International Journal of Sustainable Energy, 36(9). https://doi.org/10.1080/14786451.2015.1100197
15. Camilleri, M. A. (2022). European environment policy for the circular economy: Implications for business and industry stakeholders. Sustainable Development, 28, 6, pp. 1804-1812. https://doi.org/10.1002/sd.2113
16. Cha, G.-W., Moon, H. J., Kim, C.-Y., Hong, W.-H., Jeon, G.-Y., Yoon, Y. R., Hwang, C. H., & Hwang, J.-H. (2020). Evaluating recycling potential of demolition waste considering building structure types: A study in South Korea. Journal of Cleaner Production, 256. https://doi.org/10.1016/j.jclepro.2020.120385
17. Cheng, K.-L., Hsu, S.-C.; Li, W.-M., & Ma, H.-W. (2018). Quantifying Potential Anthropogenic Resources of Buildings through Hot Spot Analysis. Resources, Conservation and Recycling, 133, 10. https://doi.org/10.1016/j.resconrec.2018.02.003
18. Chang, D., Lee, C.K.M., Chen, C.H. (2014). Review of Life Cycle Assessment towards Sustainable Product Development. Journal of Cleaner Production, 83, 48–60. https://doi.org/10.1016/j.jclepro.2014.07.050
19. Çetin, S., Raghu, D., Honic, M., Straub, A., Gruis, V. (2023). Data requirements and availabilities for material passports: A digitally enabled framework for improving the circularity of existing buildings. Sustainable Production and Consumption, 40, 422-437. https://doi.org/10.1016/j.spc.2023.07.011
20. Charytonowicz, J., & Skowroński, M. (2015). Reuse of Building Materials. Procedia Manufacturing, 3, 1633-1637. https://doi.org/10.1016/j.promfg.2015.07.456
21. Clark,B., Sharma, N., Apraku, E., Dong, H., & Tarpeh, A. W. (2024). Ligand Exchange Adsorbents for Selective Phosphate and Total Ammonia Nitrogen Recovery from Wastewaters. Acc. Mater. Res., 5, 4, pp. 492–50. https://doi.org/10.1021/accountsmr.3c00290
22. Circular Taiwan Network. (2024). Co-prosperity between economy and environment. Circular Taiwan. https://circular-taiwan.org/.
23. Durmisevic, E. (2019). Circular Economy in Construction: Design Strategies for Reversible Buildings. BAMB, UN. ISBN 978-90-821-698-4-3.
https://www.bamb2020.eu/wp-content/uploads/2019/05/Reversible-Building-Design-Strateges.pdf
24. Durmisevic, E. (2006). Transformable building structures: Design for dissassembly as a way to introduce sustainable engineering to building design & construction. Ph.D. Thesis, TU Delft, Delft, The Netherlands. ISBN 90-902-0341-9; ISBN 978-90-9020341-6. file:///Users/zhuhui/Downloads/arc_durmisevic_20060206%20(1).pdf
25. European Commission. (2023). Proposal for a regulation of the European Parliament and of the Council establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending Regulations (EU) 168/2013, (EU) 2018/858, 2018/1724 and (EU) 2019/1020. Brussels, Belgium: European Union.
26. European Commission. (2020). A new Circular Economy Action Plan for a cleaner and more competitive Europe. European Commission.
https://eur-lex.europa.eu/resource.html?uri=cellar:9903b325-6388-11ea-b735-01aa75ed71a1.0017.02/DOC_1&format=PDF
27. European Commission. (2020). Circular Economy - Principles for Building Design. European Commission. https://ec.europa.eu/docsroom/documents/39984
28. European Commission. (2018). Circular economy action plan. Directorate-General for Environment. European Commission. https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en
29. Ekins, P., Domenech, T., Drummond, P., Bleischwitz, R., Hughes, N., & Lotti, L. (2019). The Circular Economy: What, Why, How and Where. OECD/EC Workshop, Paris
30. Ellen MacArthur Foundation. (2021). Completing the picture: How the circular economy tackles climate change. EMF. https://www.ellenmacarthurfoundation.org/completing-the-picture
31. Ellen MacArthur Foundation. (2020). Upstream innovation: A guide to packaging solutions. Ellen MacArthur Foundation. https://www.ellenmacarthurfoundation.org/upstream-innovation/overview
32. Ellen MacArthur Foundation. (2019). Completing the Picture: How the Circular Economy Tackles Climate Change. Ellen MacArthur Foundation. https://www.ellenmacarthurfoundation.org/completing-the-picture
33. Ellen MacArthur Foundation. (2019). The Circular Economy in Cities: resources suite. Ellen MacArthur Foundation.
a) https://emf.thirdlight.com/link/xj9mg8hcbvd5-bropux/@/download/1
34. Ellen MacArthur Foundation. (2013). Towards the circular economy. Ellen MacArthur Foundation. https://www.werktrends.nl/app/uploads/2015/06/Rapport_McKinsey-Towards_A_Circular_Economy.pdf
35. Environmental Planning Institute of the Ministry of Ecology and Environment. (2022). China Product Whole Life Cycle Greenhouse Gas Emission Coefficient Set. Chinese Academy of Environmental Planning. http://www.caep.org.cn/sy/tdftzhyjzx/zxdt/202201/t20220105_966202.shtml
36. Fiksel, J. (2003). Designing resilient, sustainable systems. Environmental Science & Technology, 37(23), pp. 5330-5339. https://doi.org/10.1021/es0344819
37. Fletcher, K. (2008). Sustainable fashion and textiles: Design journeys. Routledge. London. https://doi.org/10.4324/9781849772778
38. Felix, H., & Sabine, R.-O. (2020). Calculation and evaluation of circularity indicators for the built environment using the case studies of UMAR and Madaster. Journal of Cleaner Production, 243, 118482. https://doi.org/10.1016/j.jclepro.2019.118482
39. Global Alliance for Buildings and Construction. (2021). 2021 Global Status Report for Buildings and Construction. GlobalABC.
40. Graedel, T. E., & Allenby, B. R. (1995). Industrial ecology. Prentice Hall.
https://globalabc.org/sites/default/files/2021-10/GABC_Buildings-GSR-2021_BOOK.pdf
41. Gillott, C., Mihkelson, W., Lanau, M., Cheshire, D., & Tingley, D. D. (2023). Developing Regenerate: A circular economy engagement tool for the assessment of new and existing buildings. Journal of Industrial Ecology, 27, 2, pp. 423-435. https://doi.org/10.1111/jiec.13377
42. Gong, Y., & Song, D. (2015). Life cycle building carbon emissions assessment and driving factors decomposition analysis based on LMDI—A case study of Wuhan City in China. Sustainability, 7, 16670-16686. https://doi.org/10.3390/su71215838
43. Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm. Journal of Cleaner Production, 143, 757-768. https://doi.org/10.1016/j.jclepro.2016.12.048
44. Gamage, I., Senaratne, S., Perera, S., Jin, X. (2024). Implementing Circular Economy throughout the Construction Project Life Cycle: A Review on Potential Practices and Relationships. Buildings, 14, 653. https://doi.org/10.3390/buildings14030653.
45. Genovese, P.V., & Zoure, A.N. (2023). Architecture trends and challenges in sub-Saharan Africa's construction industry: A theoretical guideline of a bioclimatic architecture evolution based on the multi-scale approach and circular economy. Renewable and Sustainable Energy Reviews, 184,113593. https://doi.org/10.1016/j.rser.2023.113593
46. Hammadhu, H. A., & Anjali, G. (2024). Sustainable urban development: Evaluating the potential of mineral-based construction and demolition waste recycling in emerging economies. Sustainable Futures, 7, 100179. https://doi.org/10.1016/j.sftr.2024.100179
47. Hertwich, E. G., Ali, S., Ciacci, L., Fishman, T., Heeren, N., Masanet, E., Asghari, F. N., Olivetti, E., Pauliuk, S., & Tu, Q. S. (2019). Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics – a review. Environ. Res. Lett., 14(043004). http://doi.org/10.1088/1748-9326/ab0fe3.
48. Han, J., Jiang, P., & Childs, P.R.N. (2021). Metrics for Measuring Sustainable Product Design Concepts. Energies, 14, 3469. https://doi.org/10.3390/en14123469
49. Hong, J., Shen, G. Q., Feng, Y., Lau, S. T. W., & Mao, C. (2015). Greenhouse gas emissions during the construction phase of a building: a case study in China. Journal of Cleaner Production, 103, 15, pp. 249-259. https://doi.org/10.1016/j.jclepro.2014.11.023
50. Huang, B., Xiangyu Wang, X., Harnwei Kua, H., Yong Geng, Y., Bleischwitz, R., & Ren, J. R. (2018). Construction and Demolition Waste Management in China through the 3R Principle. Resources, Conservation & Recycling, 129, pp. 36–44. http://dx.doi.org/10.1016/j.resconrec.2017.09.029
51. Imperatives, S. (1987). Report of the World Commission on Environment and Development: Our Common Future. Sustainable Development. https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf
52. International Energy Agency. (2021). World Energy Outlook 2021. IEA. https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-789a4e14a23c/WorldEnergyOutlook2021.pdf
53. International Energy Agency. (2019). Energy Efficiency 2019. IEA. https://iea.blob.core.windows.net/assets/8441ab46-9d86-47eb-b1fc-cb36fc3e7143/Energy_Efficiency_2019.pdf
54. International Energy Agency. (2019). World Energy Outlook 2019. IEA. https://iea.blob.core.windows.net/assets/98909c1b-aabc-4797-9926-35307b418cdb/WEO2019-free.pdf
55. Ijassi, W., Evrard, D., & Zwolinski, P. (2024). Development of a circularity design methodology for urban factories based on systemic thinking and stakeholders engagement. Sustainable Production and Consumption, 46, pp. 600-616. https://doi.org/10.1016/j.spc.2024.02.031
56. Intergovernmental Panel on Climate Change. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056. https://doi.org/10.1017/9781009325844
57. Intergovernmental Panel on Climate Change. (2018). Global Warming of 1.5°C. IPCC. https://www.ipcc.ch/sr15/download/
58. Intergovernmental Panel on Climate Change. (2023). EFDB Editorial Board (EB21). IPCC 16–19. https://www.ipcc-nggip.iges.or.jp/EFDB/main.php
59. International Resource Panel. (2019). 2019 Global Resources Outlook. United Nations Environment Programme. https://www.resourcepanel.org/sites/default/files/documents/document/media/unep_252_global_resource_outlook_2019_web.pdf
60. ISO 14067:2018. (2018). Greenhouse Gases-Carbon Footprint of Products-Requirements and Guidelines for Quantification. International Organization for Standardization: Geneva, Switzerland.
61. Jayakodi, S., Senaratne, S., & Perera, S. (2024). Circular Economy Business Model in the Construction Industry: A Systematic Review. Buildings. 14, 379. https://doi.org/10.3390/buildings14020379
62. Jin, R.Y., Yuan, H.P., & Chen, Q. (2019). Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resources, Conservation and Recycling. 140, pp. 175-188. https://doi.org/10.1016/j.resconrec.2018.09.029
63. Kibert, C. J. (2022). Sustainable construction: Green building design and delivery (5th ed.). John Wiley & Sons. ISBN: 978-1-119-70645-8
64. Khadra, A., Hugosson, M., Akander, J., & Myhren, J.A. (2020). Development of a Weight Factor Method for Sustainability Decisions in Building Renovation. Case Study Using Renobuild. Sustainability, 12, 7194. https://doi.org/10.3390/su12177194
65. Kleemann, F., Lehner, H., Szczypińska, A., Lederer, J., & Fellner, J. (2017). Using change detection data to assess amount and composition of demolition waste from buildings in Vienna. Resources, Conservation and Recycling, 123, pp. 37-46. https://doi.org/10.1016/j.resconrec.2016.06.010
66. Kapica, B., Targowski, W., & Kulowski, A. (2024). Is the concept of zero waste possible to implement in construction? Buildings, 14(2), 428. https://doi.org/10.3390/buildings14020428
67. Lizárraga-Mendiola, L., López-León, L.D., & Vázquez-Rodríguez, G.A. (2022). Municipal Solid Waste as a Substitute for Virgin Materials in the Construction Industry: A Review. Sustainability, 14(24), 16343. https://doi.org/10.3390/su142416343.
68. Leonora Charlotte, M. E., Morten, B., & Harpa, B. (2022). Building design and construction strategies for a circular economy. Architectural Engineering and Design Management, 18, pp. 93-113. https://doi.org/10.1080/17452007.2020.1781588
69. Leising, E., Quist, J., & Bocken, N. (2018). Circular Economy in the building sector: Three cases and a collaboration tool. Journal of Cleaner Production, 176, 976-989. https://doi.org/10.1016/j.jclepro.2017.12.010
70. Lyu, C., Zhang, Z., Chen, X.M., Ma, D., & Cai, B.F. (2021). Vehicle Carbon Dioxide Emission Factors of Road Traffic in China by Province. China Environ, 47, 3122–3130.
71. McDonough, W., & Braungart, M. (2002). Cradle to cradle: Remaking the way we make things. North Point Press. ISBN 0-86547-587-3
72. Mckinsey & Company. (2022). The net-zero transition: What it would cost, what it could bring. Mckinsey & Company. https://www.mckinsey.com/capabilities/sustainability/our-insights/the-net-zero-transition-what-it-would-cost-what-it-could-bring
73. Marin, J., & De Meulder, B. (2018). Interpreting Circularity. Circular City Representations Concealing Transition Drivers. Sustainability, 10, 1310. https://doi.org/10.3390/su10051310.
74. Miller, S.A., Horvath, A., & Monteiro, P. J. M. (2016). Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%. Environmental Research Letters, 13(6). DOI 10.1088/1748-9326/11/7/074029.
75. Mengpin, G., Johannes, F. & Leandro, V. (2020). 4 Charts Explain Greenhouse Gas Emissions by Countries and Sectors. WRI.
https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors
76. MVRDV. (2000). EXPO 2000. MVRDV. https://www.mvrdv.com/projects/158/expo-2000.
77. Negendahl, K., Barholm-Hansen, A.; Andersen, R. (2022). Parametric Stock Flow Modelling of Historical Building Typologies. Buildings, 12, 1423. https://doi.org/10.3390/buildings12091423
78. Ng, W. Y. & Chau, C. K. (2015). New Life of the Building Materials- Recycle, Reuse and Recovery. Energy Procedia, 75, 2884-2891. https://doi.org/10.1016/j.egypro.2015.07.581
79. Nabilla, M., Khairunisa, M., Rahimah, E., Andri, K., & Mohd, H. H. (2022). Environmental impact of cement production and Solutions: A review. Materials Today: Proceedings, 48(4), pp, 741-746. DOI: 10.1016/j.matpr.2021.02.212
80. Nußholz, J. L.K., Rasmussen, F. N., Whalen, K., & Plepys, A. (2020). Material reuse in buildings: Implications of a circular business model for sustainable value creation. Journal of Cleaner Production, 245, 118546. https://doi.org/10.1016/j.jclepro.2019.118546
81. Organization for Economic Co-operation and Development (OECD). (2019). Global material resources outlook to 2060: Economic Drivers and Environmental Consequences. OECD Publishing. https://doi.org/10.1787/9789264307452-en
82. Omer, M. A. B. (2021). Development of a multi-criteria assessment approach for the selection of green building materials integrated into building envelope assemblies: Ranking alternatives for the achievement of the UN Sustainable Development Goals (Doctoral dissertation). Graduate School of Engineering, Department of Architecture, Building Material Engineering Laboratory, The University of Tokyo.
83. Orsini, F., & Marrone, P. (2019). Approaches for a low-carbon production of building materials: A review. Journal of Cleaner Production, 241(118380). https://doi.org/10.1016/j.jclepro.2019.118380
84. PricewaterhouseCoopers. (2023). The circular economy: an opportunity for the buildings and construction sector. Starting points for real-world projects Current trends and recommendations – white paper. PwC.
https://www.pwc.es/es/publicaciones/sostenibilidad/economia-circular-oportunidad-edificacion-construccion.pdf
85. Poon, C. S., & Chan, D. (2007). A review on the use of recycled aggregate in concrete in Hong Kong. In Proceedings of the International Conference on Sustainable Construction Materials and Technologies, Coventry, UK, 11–13, pp. 144–155.
86. Pons-Valladares, O. & Nikolic, J. (2020). Sustainable Design, Construction, Refurbishment and Restoration of Architecture: A Review. Sustainability, 12, 9741. https://doi.org/10.3390/su12229741
87. PAS 2050:2011. (2011). Specifi Cation for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services. BIS (Department for Business Innovation & Skills), London, UK.
88. Royal Institute of British Architects (RIBA). (2021). RIBA Sustainable Outcomes Guide. RIBA Publishing. https://www.architecture.com/knowledge-and-resources/resources-landing-page/sustainable-outcomes-guide
89. Stahel, W. R. (2010). The performance economy. Palgrave Macmillan. https://doi.org/10.1057/9780230274907
90. SchoonSchip Amsterdam. (2016). About SchoonSchip. SchoonSchip Amsterdam. https://schoonschipamsterdam.org/en/.
91. Sgambaro, L., Chiaroni, D., & Urbinati, A. (2024). The design and servitization of products according to the circular economy principles: an ecosystem perspective in the building industry. Journal of Cleaner Production, 142322. https://doi.org/10.1016/j.jclepro.2024.142322
92. Santos, P., Cervantes, G.C., Zaragoza-Benzal, A., Byrne, A., Karaca, F., Ferrández, D., Salles, A., & Bragança, L. (2024). Circular material usage strategies and principles in buildings: A review. Buildings, 14(1), 281. https://doi.org/10.3390/buildings14010281
93. Sustainable Development Goals. (2015). Take Action for the Sustainable Development Goals. SDGs. https://www.un.org/sustainabledevelopment/sustainable-development-goals/.
94. SAINT-GOBAIN. (2022). Circular Economy: Eco-Design for Sustainable Construction. Saint-Gobain. https://www.saint-gobain.co.uk/download-documents/corporate-literature/saint-gobain-circular-economy-0.pdf
95. Sanchez, B., Honic, M., Leite, F., Herthogs, P., & Stouffs, R. (2024). Augmenting materials passports to support disassembly planning based on building information modelling standards. Journal of Building Engineering, 90, 109083. https://doi.org/10.1016/j.jobe.2024.109083
96. Studio Precht. (2017). THE FARMHOUSE. Studio Precht. https://www.precht.at/project/001-the-farmhouse/?index=0
97. Santamouris, M., & Vasilakopoulou, k. (2021). Present and future energy consumption of buildings: Challenges and opportunities towards decarbonization. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 1, 100002. https://doi.org/10.1016/j.prime.2021.100002
98. Tirado, R., Aublet, A., Laurenceau, S., & Habert, G. (2022). Challenges and Opportunities for Circular Economy Promotion in the Building Sector. Sustainability, 14, 1569. https://doi.org/10.3390/su14031569.
99. Tsai, F. M., Bui, T. D., Tseng, M. L., Lim, M. K., & Hu, J.Y. (2019). Municipal solid waste management in a circular economy: A data-driven bibliometric analysis. Journal of Cleaner Production, 275, 124132. https://doi.org/10.1016/j.jclepro.2020.124132
100. United Nations. (2020). UN/DESA Policy Brief #109: Accelerate action to revamp production and consumption patterns: the circular economy, cooperatives and the social and solidarity economy. Department of Economic and Social Affairs. https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-109-accelerate-action-to-revamp-production-and-consumption-patterns-the-circular-economy-cooperatives-and-the-social-and-solidarity-economy/
101. UN Climate Change. (2021). From Vision to Reality: NDCs 3.0 – bending the curve. NUCC. https://unfccc.int/.
102. UK Government. (2021). GHG Conversion Factors for Company Reporting. UK Government. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023.
103. United Nations Environment Programme. (2023). Annual Report 2022. UNEP. https://www.unep.org/resources/annual-report-2022
104. United Nations Environment Programme. (2022). 2022 Global Status Report for Buildings and Construction: Towards a Zero‑emission, Efficient and Resilient Buildings and Construction Sector. Nairobi. ISBN No: 978-92-807-3984-8
105. United Nation Environment Programme. (2022). CO2 emissions from buildings and construction hit new high, leaving sector off track to decarbonize by 2050: UN. UNEP.
https://www.unep.org/news-and-stories/press-release/co2-emissions-buildings-and-construction-hit-new-high-leaving-sector.
106. United Nations Environment Programme. (2022). Global Environment Outlook 6. UNEP. https://wedocs.unep.org/bitstream/handle/20.500.11822/27539/GEO6_2019.pdf?sequence=1&isAllowed=y
107. Van den Berg, M., Voordijk, H., & Adriaanse, A. (2020). Recovering building elements for reuse (or not)—Ethnographic insights into selective demolition practices. Journal of Cleaner Production, 256, 120332. https://doi.org/10.1016/j.jclepro.2020.120332
108. World Economic Forum. (2018). Circular Economy in Cities: Evolving the model for a sustainable urban future. WEF & PwC. https://www3.weforum.org/docs/White_paper_Circular_Economy_in_Cities_report_2018.pdf
109. World Green Building Council. (2019). Bringing Embodied Carbon Upfront: Coordinated action for the building and construction sector to tackle embodied carbon. WGBC. https://worldgbc.org/article/bringing-embodied-carbon-upfront/.
110. World Resources Institute. (2023). This Interactive Chart Shows Changes in the World's Top 10 Emitters. WRI.
https://www.wri.org/insights/interactive-chart-shows-changes-worlds-top-10-emitters.
111. World Resources Institute and World Business Council for Sustainable Development. (2012). Greenhouse Gas Protocol. Economic Science Press. https://ghgprotocol.org/sites/default/files/standards/Chinese_small.pdf
112. Xue, K., Hossain, M.U., Liu, M.; Ma, M., Zhang, Y., Hu, M., Chen, X., & Cao, G. (2021). BIM Integrated LCA for Promoting Circular Economy towards Sustainable Construction: An Analytical Review. Sustainability, 13, 1310. https://doi.org/10.3390/su13031310
113. Xiong, L., Wang, M., Mao, J., & Huang, B. (2024). A Review of Building Carbon Emission Accounting Methods under Low-Carbon Building Background. Buildings, 14(3):777. https://doi.org/10.3390/buildings14030777
114. Xie, J. L., Xia, Z. Q., Tian, X., & Liu, Y. W. (2023). Nexus and synergy between the low-carbon economy and circular economy: A systematic and critical review. Environmental Impact Assessment Review, 100, 107077. https://doi.org/10.1016/j.eiar.2023.107077.
115. Yan, H., Shen, Q. P., Fan, C. H. L., & Wang, Y. W. (2010). Greenhouse gas emissions in building construction: A case study of One Peking in Hong Kong. Building and Environment, 45(4), pp. 949-955. https://doi.org/10.1016/j.buildenv.2009.09.014
116. Zubair, M.U., Ali, M., Khan, M.A., Khan, A., Hassan, M.U., & Tanoli, W.A. (2024). BIM- and GIS-Based Life-Cycle-Assessment Framework for Enhancing Eco Efficiency and Sustainability in the Construction Sector. Buildings, 14, 360. https://doi.org/10.3390/buildings14020360
117. Zajac, M., Jan S., Mohsen B. H., & Jan D. (2022). CO2 Mineralization Methods in Cement and Concrete Industry. Energies, 15, no. 10: 3597. https://doi.org/10.3390/en15103597
118. Zhu, H., Liou, S.-R., Chen, P.-C., He, X.-Y., Sui, M.-L. (2024). Carbon Emissions Reduction of a Circular Architectural Practice: A Study on a Reversible Design Pavilion Using Recycled Materials. Sustainability, 16(1729). https://doi.org/10.3390/su16051729
119. Zhu, H., Liou, S.-R., & Chen, P.-C. (2022). Material Classification and Reuse Framework Based on the Reverse Dismantling of Architectural Design: A Case Study in TCCLab. Sustainability, 14, 14809. https://doi.org/10.3390/su142214809