簡易檢索 / 詳目顯示

研究生: 聶大鈞
Nieh, Ta-Chun
論文名稱: 光序列碼在通道偵錯控制與網路多重擷取上之應用分析
On Analyzing Optical Code Sequences over Channel Error-Control and Network Multiple-Access Applications
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 104
中文關鍵詞: 低密度位元檢查碼光分碼多重擷取頻域振幅編碼光分波多工
外文關鍵詞: Low-Density Parity-Check (LDPC) codes, Optical Code-Division Multiple Access (OCDMA), Spectral-Amplitude-Coding (SAC), Wavelength-Division Multiplexing (WDM)
相關次數: 點閱:165下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代的長距離通訊時,勢必得採用光通訊網路以應付大數據、影音等資料交換。近年來,光通訊網路中較常被探究的為光分波多工(Wavelength-Division Multiplexing, WDM)、跳頻/展時(Wavelength Hopping/Time Spreading, WH/TS)及光分碼多重截取(Optical Code-Division Multiple-Access, OCDMA),這三者皆被視為是區域網路的最佳選擇,其中,後者優點更包括:可非同步傳輸、保密性高、網路設計較有彈性等等。

    然而當分碼多重截取的概念應用在網路架構時,各個使用者間的多重截取干擾(Multiple Access Interference, MAI)便會大幅影響系統效能。因此我們提出兩種解決方案,具備MAI消除機制的跳頻/展時光網路架構與結合光分波概念的同心圓光分碼多重截取網路。

    在跳頻/展時光網路中,我們設計兩種碼型為基底並以完全互補碼為基礎,即便設計出的完全質數位移碼(Complete/Prime/Shifted code, CPS)使得編解碼概念更加複雜,但整體系統的最大使用者數目也大幅提升,且多重截取干擾得以完全消除。而對應設計的編解碼器在硬體也更加以簡化;而在第二種光分波/分碼多重截取網路中,我們使用分波段的概念及同心圓規劃將整體使用者數量切割,以此降低網路硬體的負擔。我們也針對同心圓網路去設計不同群組間的溝通方式,且更有效的控制彼此傳輸時間。而所設計的延申最大碼長序列(Extended M-Sequence code, EMS)則具備了靈活度高、低交相關性、自循環等等特性,在簡化硬體設計上有很大的幫助。

    另外我們也探討其它方式來降低在光/無線通訊的錯誤率,商業實務上,包括WiFi 802.11n/ac或WiMAX等皆已經導入低密度位元檢查碼(Low-Density Parity-Check code, LDPC)來達成目標,然而地板效應(error floor)會限制住低密度位元檢查碼的效能,因此,我們去設計一種骨架矩陣(skeleton matrix)來改善查核矩陣(parity-check matrix)的結構。動機在於藉由這種骨架矩陣去降低查核矩陣中可能最小週長(girth)數目。骨架矩陣不僅有效且系統地分散了查核矩陣的組合,且保持了原先的最小週長。由模擬結果得知,我們提出的方式可有效改善現有文獻中的低密度位元檢查碼的效能。

    In long-distance transmission networks, one effective solution to handle big data and information transmission is utilizing optical fiber communication systems. Recently, Wavelength-Division Multiplexing (WDM), Wavelength-Hopping/Time-Spreading (WH/TS) and Optical Code-Division Multiple Access (OCDMA) are getting more attractive over local area network. Especially of the OCDMA systems, having some advantages, suck like asynchronous transmission, security in transmission, flexibility in network design.

    However, the multiple access interference (MAI) caused from each user become a major issue, since it generally decreases the performance of CDM network. Therefore we propose two solutions, an optical WH/TS network with MAI cancelation and a concentric WDM/OCDMA network.

    In optical WH/TS network, we propose a completely prime shifted code (CPS) composed of three different sequence families. It enlarges the cardinality of proposed WH/TS system and eliminates the MAI. In additional, the hardware designs of encoder/decoder are also reduced. In second solutions, a WDM/OCDMA utilizes concentric-circles topology to divide optical network units (ONUs) into different groups. It not only give that the optical line terminal (OLT) can preserve a well round-trip transmission time, but also lower the hardware loading of each group. A proposed extended M-sequence code (EMS) is also designed with several properties, such as high flexibility, low cross-correlation and cyclic shifted.

    In additional, we also seek another solution on improving the bit error rate (BER) over optical/wireless communication. The low-density parity-check (LDPC) codes have been selected to be a standard of 802.11n/ac and WiMax. Since an error floor limits the performance of regular quasi-cyclic (QC) LPDC codes, we propose a so-called "skeleton matrix" to modify the structure of the parity-check matrix. A motivation is to reduce the possible short-cycles in regular parity-check matrix. The skeleton matrix not only systematically disrupts positions of parity-check matrix, but also maintains previous girth of codes. Simulation results show that proposed QC-LDPC codes improved can overcome the previous error floor performance.

    中文摘要 I Abstract II 致謝 (Acknowledgments) III List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1. Low-Density Parity-Check (LDPC) Codes 2 1.2. Wavelength-Division Multiplexing (WDM) Network 4 1.3. Spectral-Amplitude-Coding (SAC) OCDMA Network 6 1.4. Time-Spreading/Wavelength-Hopping OCDMA Network 9 1.5. Motivation of the Research 11 Chapter 2 Low-density parity-check (LDPC) Codes 12 2.1. Tanner Graph and LDPC code Families 13 2.1.1. Random LDPC codes 14 2.1.2. Structured LDPC codes 16 2.2. Quasi-Cyclic (QC) LDPC codes 18 2.3. Iterative Decoding Algorithm 20 2.4. Construction of Skeleton-based QC-LDPC codes 24 2.5. Simulation Results on the Proposed QC-LDPC Codes 29 Chapter 3 Multi-AWGs WDM/OCDMA Networks 33 3.1. Fundamentals of Arrayed-Waveguide Gratings (AWGs) 35 3.2. System Design for Concentric WDM/OCDMA Systems 40 3.3. Coding Process and MAI Cancellation 49 3.4. Performance Analysis 52 3.4.1. BER evaluation with EMS codes 52 3.4.2. Performance analysis 54 3.5. Summary 59 Chapter 4 TS/WH SAC-OCDMA Networks 60 4.1. Fundamentals of Fiber Bragg Gratings (FBGs) 60 4.2. System Design with the WH/TS Code Family 63 4.3. BER Evaluation in Asynchronous/Synchronous System 72 4.3.1. Correlation and Cardinality Property 72 4.3.2. BER Evaluation in Asynchronous System 75 4.3.3. BER Evaluation in synchronous System 77 4.4. Summary 81 Chapter 5 Conclusions 82 References 84 自述 93

    [1] R. Scholtz, "The spread spectrum concept," IEEE Trans. Commun., vol. 25, pp. 748-755, Aug. 1977.
    [2] R. Gallager, "Low-density parity-check codes," IRE Trans. Inform. Theory, vol. 8, pp. 21-28, Oct. 1962.
    [3] D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low-density parity-check codes," Electron. Lett., vol. 32, pp. 1645-1646, Nov. 1996.
    [4] J. F. Huang, C. C. Yang, and C. M. Huang, "On analyzing quasi-cyclic LDPC codes over modified Welch-Costas-coded optical CDMA system," IEEEJ. Lightw. Technol., vol. 19, pp. 1274-1281, Dec. 2009.
    [5] C. M. Huang, J. F. Huang, and C. C. Yang, "Construction of quasi-cyclic LDPC codes from quadratic congruences," IEEECommun. Lett, vol. 12, pp. 313-315, Apr. 2008.
    [6] Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong, "Efficient encoding of quasi-cyclic low-density parity-check codes," IEEE Trans. Commun., vol. 54, pp. 71-81, Mar. 2006.
    [7] L. Lan, Y. Y. Tai, S. Lin, B. Mermari, and B. Honary, "New constructions of quasi-cyclic LDPC codes based on special classes of BIBD's for the AWGN and binary erasure channels," IEEE Trans. Commun., vol. 56, pp. 39-48, Jun. 2008.
    [8] S. Song, B. Zhou, S. Lin, and K. Abdel-Ghaffar, "A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields," IEEE Trans. Commun., vol. 57, pp. 84-93, Jul. 2009.
    [9] F. Zhang, X. Mao, W. Zhou, and H. D. Pfister, "Girth-10 LDPC codes based on 3-D cyclic lattices," IEEE Trans. Veh. Technol., vol. 57, pp. 1049-1060, Mar. 2008.
    [10] M. Esmaeili and M. Gholami, "Geometrically Structured Maximum Girth LDPC Block and Convolutional Codes," IEEE J. Sel. Areas Commun., vol. 27, pp. 831-845, Apr. 2009.
    [11] S. Bandi, B. Tralli, A. Conti, and M. Nonato, "On Girth Conditioning for Low-Density Parity-Check Codes," IEEE Trans. Commun., vol. 59, pp. 357-362, Nov. 2011.
    [12] Milenkovic, N. Kashyap, and D. Leyba, "Shortened array codes of large girth," IEEE Trans. Inform. Theory, vol. 52, pp. 3707-3722, Oct. 2006.
    [13] M. P. C. Fossorier, "Quasi-cyclic low-density parity-check codes from circulant permutation matrices," IEEE Trans. Inf. Theroy, vol. 50, pp. 1788-1793, Aug. 2004.
    [14] Y. Kou, S. Lin, and M. P. C. Fossorier, "Low-density parity-check codes based on finite geometries: A rediscovery and new results," IEEE Trans. Inf. Theory, vol. 47, pp. 2711-2736, Nov. 2001.
    [15] R. M. Tanner, "Spectral graphs for quasi-cyclic LDPC codes," in Proc. IEEE Int. Symp. Inf. Theory, Washington, DC, Jun., 2001, p. 226.
    [16] S. J. Johnson and S. R. Weller, "A family of irregular LDPC codes with low encoding complexity," IEEE Commun. Lett., vol. 7, pp. 79-81, Feb. 2003.
    [17] H. Tang, J. Xu, Y. Kou, S. Lin, and K. Abdel-Ghaffar, "On algebraic construction of Gallager and circulant low-density parity-check codes," IEEE Trans. Inf. Theory, vol. 50, pp. 1269-1279, Jun. 2004.
    [18] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and Jr. D. J. Costello, "LDPC block and convolutional codes based on circulant matrices," IEEE Trans. Inf. Theory, vol. 50, pp. 2966-2984, Feb. 2004.
    [19] J. Xu, L. Chen, L. Q. Zeng, L. Lan, and S. Lin, "Construction of low-density parity-check codes by superposition," IEEE Trans. Commun., vol. 53, pp. 243-251, Apr. 2005.
    [20] S. Lin, L. Chen, J. Xu, and I. Djurdjevic, "Near Shannon limit quasi-cyclic low-density parity-check codes," in Proc. 2003 IEEE GlobeCom Conf., Dec. 2003, pp. 2030-2035.
    [21] J. Y. Hui, "Pattern Code Modulation and Optical Decoding — A Novel Code-Division Multiplexing Technique for Multifiber Network," IEEE J. Select. Area Commun., vol. SAC-3, pp. 916-927, Nov. 1985.
    [22] J. A. Salehi, "Code division multiple-access techniques in optical fiber networks—Part II: Systems performance analysis," IEEE Trans. Commun., vol. 37, pp. 834-842, Aug. 1989.
    [23] D. Zaccarin and M. Kavehrad, "An optical CDMA system based on spectral encoding of LED," IEEE Photon. Technol. Lett, vol. 5, pp. 479-482, Dec. 1993.
    [24] M. Kavehard and D. Zaccarin, "Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,"IEEEJ. Lightwave Technol., vol. 13, pp. 534-545, Mar. 1995.
    [25] X. Zhou, H. M. H. Shalaby, C. Lu, and T. Cheng, "Code for spectral amplitude coding optical CDMA systems," Electron. Lett., vol. 36, pp. 728-729, Apr. 2000.
    [26] J. F. Huang and D. Z. Hsu, "Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes," IEEE Photon. Technol. Lett., vol. 12, pp. 1252-1254, Sept. 2000.
    [27] K. Kitayama, "Novel spatial spread-spectrum based fiber optic CDMA networks for image transmission," IEEE J. Sel. Areas Commun., vol. 12, pp. 762-772, May. 1993.
    [28] W. C. Kwong and G. C. Yang, "Image transmission in multicore-fiber code-division multiple-access networks," IEEECommun. Lett., vol. 2, pp. 285-287, Sept. 1998.
    [29] L. Tanceyski, I. Andonoyic, M. Tur, and J. Budin, "Hybrid wavelength hopping/time spreading code division multiple access systems," IEE Proc-Optoelectron, vol. 143, pp. 161-166, Jun. 1996.
    [30] G. C. Yang and W. C. Kwong, "Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks," IEEE Trans. Commun., vol. 45, pp. 1426-1434, Jul. 1997.
    [31] A. A. Shaar and P. A. Davies, "Prime sequences: quasi-optimal sequences for OR channel code division multiplexing," Electron. Lett., vol. 19, pp. 888-890, Apr. 1983.
    [32] C. C. Yang and J. F. Huang, "Two-dimensional M-matrices coding in spatial/frequency optical CDMA networks," IEEE Photon. Technol. Lett., vol. 15, pp. 168-170, Mar. 2003.
    [33] A. J. Mendez, R. M. Gagliardi, and V. J. Hernandez et al., "Design and performance analysis of wavelength/time (W/T) matrix codes for optical CDMA," IEEE J. Lightw. Technol., vol. 21, May. 2003.
    [34] E. Narimanov, W. C. Kwong, G. C. Yang, and P. R. Prucnal, "Shifted carrier-hopping prime codes for multicode keying in wavelength-time OCDMA," IEEE Trans. Comm., vol. 53, pp. 2150-2156, Dec. 2005.
    [35] W. C. Kwong, G. C. Yang, and C. Y. Chang, "Wavelength-hopping time-spreading optical CDMA with bipolar codes," IEEE J. Lightw. Technol., vol. 23, pp. 1485-1495, Nov. 2005.
    [36] C. P. Hsieh, C. Y. Chang, G. C. Yang, and W. C. Kwong, "A bipolar-bipolar code for asynchronous wavelength-time optical CDMA," IEEE Trans. Commun., vol. 54, pp. 1190-1194, Oct. 2006.
    [37] H. W. Hu, H. T. Chen, G. C. Yang, and W. C. Kwong, "Synchronous walsh-based bipolar-bipolar code for, CDMA passive optical networks," IEEE J. Lightw. Technol., vol. 25, pp. 1910-1917, Sept. 2007.
    [38] F. T. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, "Success-HPON: A next-generation optical access architecture for smooth migration from TDM-PON to WDM-PON," IEEE Commun. Mag., pp. S40-S47, Nov. 2005.
    [39] S. J. Park et al., "Fiber-to-the-home services based on wavelengthdivisionmultiplexing passive optical network," IEEE J. Lightwave Technol., vol. 22, pp. 2582-2591, Nov. 2004.
    [40] A. Sierra and S. V. Kartalopoulos, "Evaluation of Two Prevalent EPON Networks Using Simulation Methods," in International Conference on Internet and Web Applications and Services; Advanced International Conference on Telecommun., Feb. 2006.
    [41] K. Kitayama, X. Wang, and N. Wada, "OCDMA over WDM PON solution path to gigabit-symmetric FTTH," IEEEJ. Lightw. Technol., vol. 24, pp. 1654-1662, Feb. 2006.
    [42] J. F. Huang, C. M. Huang, and C. C. Yang, "Construction of one-coincidence sequence quasi-cyclic LDPC codes of large girth," IEEE Trans. Inform. Theory, vol. 58, pp. 1825-1836, Nov. 2012.
    [43] C. C. Yang, "Optical CDMA passive optical network using prime code with interference elimination," IEEE Photon. Technol. Lett., vol. 19, pp. 516-518, Jun. 2007.
    [44] Y. Wang, J. S. Yedidia, and S. C. Draper, "Construction of high-girth QC-LDPC codes," in Proc. 25th Int. Symp. Turbo Codes and Related Topics, 2008.
    [45] B. Vasic, I. B. Djordjevic, and R. K. Kostuk, "Low-density parity check codes and iterative decoding for long-haul optical communication systems,"IEEEJ. Lightwave Technol., vol. 21, pp. 438-446, Feb. 2003.
    [46] T. Richardson and R. Urbanke, "The capacity of low-density parity-check codes under message-passing decoding," IEEE Trans. Inform. Theory, vol. 47, pp. 599-618, Feb. 2001.
    [47] H. TakaHashi, S. Suzuki, K. Katoh, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution," Electron. Lett., vol. 26, pp. 87-88, Apr. 1990.
    [48] C. Dragone, C. A. Edwards, and R. C. Kistler, "Integrated optics N×N multiplexer on silicon," IEEEPhoton. Technol. Lett., vol. 3, pp. 896-899, Sept. 1991.
    [49] H. Takahashi and Y. Hibino, "Integrated optics N×N multiplexer on silicon," in Dig. 4th Optoelectronics Conf., IEICE, Japan, 1992.
    [50] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, "Transmission characteristics of arrayed-wave-guide N×N wavelength multiplexer," IEEE J. Lightwave Technol., vol. 13, pp. 447-455, Mar. 1995.
    [51] B. Vidal, D. Madrid, J. L. Corral, and J. Marti, "Novel Photonic True-Time-Delay Beamformer Based on the Free-Spectral-Range Periodicity of Arrayed Waveguide Gratings and Fiber Dispersion," IEEE Photon. Technol., vol. 14, pp. 1614-1616, Nov. 2002.
    [52] C. Bock, J. Prat, and S. D. Walker, "Hybrid WDM/TDM PON Using the AWG FSR and Featuring Centralized Light Generation and Dynamic Bandwidth Allocation," IEEEJ. Lightwave Technol., vol. 23, Dec. 2005.
    [53] A. Banejee et al., "Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review," Journal of Optical Networking, vol. 4, pp. 824-833, Nov. 2005.
    [54] Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, "Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitue-coding optical CDMA systems," IEEE J. Lightwave Technol., vol. 19, pp. 1274-1281, Sept. 2001.
    [55] E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, "Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation," IEEE Trans. Commun., vol. 46, pp. 1176-1185, Sept. 1998.
    [56] G. Kramer and G. Pesavento, "Ethernet passive optical network (EPON): building a next-generation optical access network," IEEE Commun. Mag., vol. 40, pp. 66-73, Jun. 2002.
    [57] J. A. Salehi, "Code division multiple-access techniques in optical fiber networks —Part I: Fundamental principles," IEEE Trans. Commun., vol. 37, pp. 824-833, Dec. 1989.
    [58] S. P. Tseng and J. Wu, "A New code family suitable for high-rate SAC-OCDMA PONs application," IEEE J. Select. Areas Commun., vol. 28, pp. 827-837, Dec. 2010.
    [59] C. C. Yang, J. F. Huang, and H. P. Tseng, "Optical CDMA network codecs structured with M-sequence codes over waveguide-grating routers," IEEE Photon. Technol. Lett., vol. 16, pp. 641-643, Nov. 2004.
    [60] C. C. Yang, "Modified legendre sequences for optical CDMA-based passive optical networks," IEEE Commun. Lett., vol. 10, pp. 393-395, Sept. 2006.
    [61] D. K. W. Lam and B. K. Garside, "Characterization of single-mode optical fiber filters," Applied Optics, vol. 20, pp. 440-445, Jul. 1981.
    [62] E. A. Golovchenko et al., "Modeling of transoceanic fiber-optic WDM communications systems," IEEE J. Select. Topics Quantum Electron., vol. 6, pp. 337-347, Apr. 2000.
    [63] W. C. Kwong, P. A. Perrier, and P. R. Prucnal, "Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiberoptic local area networks," IEEETrans. Commun., vol. 19, pp. 1625-1634, Apr. 1991.
    [64] H. H. Chen and J. F. Yeh, "A complementary codes-based CDMA architecture for wideband mobile internet with high spectral efficiency and exact rate matching," Inter. J. Commun. Systems, vol. 16, pp. 497-512, Mar. 2003.
    [65] H. H. Chen, The next generation CDMA technologies.: Wiley Interscience, 2007.
    [66] K. H. A. Karkkainen, "Meaning of maximum and mean-square cross-correlation as a performance-measure for cdma code families and their influence on system capacity," IEICE Trans. on Commun., vol. E76-B, pp. 848-854, Dec. 1993.
    [67] S. Lin and D. J. Costello, Error Control Codeing: Fundamentals and Applications, 2nd ed.: Upper Saddle River, NJ:Prentice-Hall, 2004.
    [68] D. J. C. Mackay and R. M. Neal, "Good codes based on very sparse matrices," in Cryptography and Coding 5th IMA Conf., C. Voyd, Ed., Lecture Notes in Computer Science, Berlin, Germany, 1995, pp. pp. 100-111.
    [69] N. Alon and M. Luby, "A linear time erasure-resilient code with nearly optimal recovery," IEEE Trans. Inf. Theory, vol. 42, pp. 1732-1736, Nov. 1996.
    [70] D. J. C. Mackay, "Good error-correcting codes based on very sparse matrices," IEEE Trans. Inf. Theory, vol. 45, pp. 399-431, Mar. 1999.
    [71] B. Ammar, B. Honary, Y. Kou, J. Xu, and S. Lin, "Construction of low-density parity-check codes based on balanced incomplete block designs," IEEE Trans. Inf. Theory, vol. 50, pp. 1257-1268, Jun. 2004.
    [72] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, "Near-Shannon-limit quasi-cyclic low-density parity-check codes," IEEE Trans. Commun., vol. 52, pp. 1038-1042, Oct. 2004.
    [73] S. Kim, J. S. No, H. B. Chung, and D. J. Shin, "On the girth of Tanner (3,5) quasi-cyclic LDPC codes," IEEE Trans. Inf. Theory, vol. 52, pp. 1739-1744, Apr. 2006.
    [74] M. Lentmier and K. S. Zigangirov, "On generalized low-density parity-check codes based on hamming component codes," IEEE Commun. Lett., vol. 3, pp. 248-250, Aug. 1999.
    [75] J. Lu and J. M. F. Moura, "Structured LDPC codes for high-density recording: large girth and low error floor," IEEE Trans. Magn., vol. 42, pp. 208-213, Aug. 2006.
    [76] J. Xu, L. Chen, I. Djurdjevic, S. Lin, and K. Abdel-Ghaffar, "Construction of regular and irregular LDPC codes: Geometry decomposition and masking," IEEE Trans. Inf. Theory, pp. 121-134, Jan. 2007.
    [77] J. H. Chen, R. M. Tanner, J. T. Zhang, and M. P. C. Fossorier, "Construction of irregular LDPC codes by quasi-cyclic extension," IEEE Trans. Inf. Theory, vol. 53, pp. 1479-1483, Apr. 2007.

    下載圖示 校內:2018-10-15公開
    校外:2018-10-15公開
    QR CODE