| 研究生: |
蔡智凱 Tsai, Chih-Kai |
|---|---|
| 論文名稱: |
高數值孔徑光學成像於亞波長細胞結構之有限差分時域法模擬 FDTD Simulation of High-NA Optical Imaging for Subwavelength Cellular Structures |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 部分波光譜學 、高數值孔徑 、有限差分時域法 |
| 外文關鍵詞: | Partial Wave Spectroscopy, High Numerical Aperture, Finite-Difference Time-Domain |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了在奈米尺度上精確量測細胞內部結構,本研究結合高數值孔徑光學成像系統與部分波光譜學 (PWS) 技術,並利用有限差分時域法 (FDTD) 模擬其光散射及成像結果,以期提高傳統光學顯微鏡的解析極限,特別適用於早期癌症診斷等生物醫學應用。
傳統光學顯微鏡因解析極限限制,難以分辨小於200奈米的細胞結構,這對於早期疾病診斷造成挑戰。本研究提出一種數值模擬方法,旨在克服此限制。透過FDTD精確模擬細胞內部複雜奈米結構之間的散射過程。FDTD作為一種全波數值方法,透過FDTD能完整捕捉不同形狀與介質分佈所產生的全角度散射光,包括那些包含豐富高空間頻率資訊的大角度散射成分,為後續成像提供可靠的電磁場數據。
高NA系統能有效收集來自奈米結構的大角度散射光,這些光線承載著關於細胞精細結構的豐富高空間頻率資訊,是增加繞射解析度並提升圖像解析度的關鍵。FDTD模擬獲得的散射場數據經由近遠場轉換後,再結合向量繞射理論與Debye-Wolf積分等方法,模擬經高NA透鏡收集與再聚焦後的成像過程,重建出高解析度的細胞結構圖像。
透過此模擬框架,我們得以量化光散射光譜特性,並探討細胞內奈米尺度結構的折射率變化如何影響成像結果。結合部分波光譜學 (PWS) 分析,利用一維光學干涉頻譜對亞波長尺度折射率變化有高度靈敏性,能夠檢測細胞內奈米尺度結構的折射率變化,從而區分正常細胞與癌細胞的微小差異。
本研究驗證了高數值孔徑光學系統結合FDTD模擬在提升細胞奈米結構診斷能力上的潛力,期望為區分正常細胞與癌細胞提供新的數值工具,進而為早期癌症檢測等生物醫學應用提供創新視野。
This study combines high numerical aperture (high-NA) optical imaging with partial wave spectroscopy (PWS), utilizing the Finite-Difference Time-Domain (FDTD) method to simulate light scattering and imaging. Typical optical imaging systems involve four fundamental stages: illumination, scattering from the sample, collection of scattered light, and refocusing for image formation. Our aim is to overcome the diffraction limit of conventional microscopy for subwavelength cellular structures, particularly for early cancer diagnosis.
Conventional microscopy struggles to resolve cellular structures below 200 nm due to the diffraction limit. To address this, we employ Gaussian-profiled plane waves as the incident source. FDTD accurately simulates their scattering from complex nanoscale cellular structures by directly solving Maxwell's equations in space and time, comprehensively capturing full-angle scattered light, including high spatial frequency components crucial for imaging.
To enhance resolution, we simulate the collection capabilities of a high-NA optical system. Unlike low-NA systems that often neglect large-angle scattered light, high-NA lenses efficiently collect these information-rich rays, which carry high spatial frequencies essential for resolving fine details and are vital for breaking the diffraction limit. FDTD scattering data, after Near-to-Far Field Transformation, are then combined with vector diffraction theory and the Debye-Wolf integral to model high-NA collection and refocusing, reconstructing high-resolution cellular images.
This framework quantifies light scattering spectral characteristics and explores how refractive index variations in nanostructures affect imaging. Integrating PWS analysis, this study validates the potential of high-NA imaging combined with FDTD simulation in enhancing diagnostic capabilities for cellular structures, and we expect to provide a new numerical tool for early cancer detection and other biomedical applications.
[1] Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th ed. Cambridge University Press (1999).
[2] Pawley JB, editor. Handbook of Biological Confocal Microscopy. Springer (1995).
[3] Subramanian H, Roy HK, Pradhan P, et al. Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy. Cancer Res. 69(13), 5357-5363 (2009).
[4] Roy HK, Subramanian H, Damania D, et al. Optical detection of buccal epithelial nanoarchitectural alterations in patients harboring lung cancer: implications for screening. Cancer Research. 70(20), 7748-7754 (2010).
[5] Taflove A, Hagness SC. Computational Electrodynamics: the Finite-Difference Time-Domain Method. Artech House (2005).
[6] Çapoğlu İR, White CA, Rogers JD, Subramanian H, Taflove A, Backman V. Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method. Opt Lett. 36(9), 1596-1598 (2011).
[7] Török P, Varga P. Electromagnetic diffraction of light focused through a stratified medium. Appl Opt. 36(11), 2305-2312 (1997).
[8] Cherkezyan L, Capoglu I, Subramanian H, et al. Interferometric hari of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations. Physical Review Letters. 111(3), 033903 (2013).
[9] Rogers JD, Radosevich AJ, Yi J, Backman V. Modeling light scattering in tissue as continuous random media using a versatile refractive index correlation function. IEEE Journal of Selected Topics in Quantum Electronics. 20(2), 173-186 (2014).
[10] Rayleigh L. On the theory of optical images, with special reference to the microscope. Philos Mag. 42(255), 167-195 (1896).
[11] Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie. 9(1), 413-468 (1873).
[12] Alberts B, et al. Molecular Biology of the Cell. Garland Science (2014).
[13] Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys. 330(3), 377-445 (1908).
[14] Wilson JD, Foster TH. Mie theory interpretations of light scattering from intact cells. Opt Lett. 30(18), 2442-2444 (2005).
[15] Bohren CF, Huffman DR. Absorption and Scattering of Light by Small Particles. John Wiley & Sons (1998).
[16] Mourant JR, Freyer JP, Hielscher AH, et al. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl Opt. 37(16), 3586-3593 (1998).
[17] Yee KS. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans Antennas Propag. 14(3), 302-307 (1966).
[18] Berenger JP. A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys. 114(2), 185-200 (1994).
[19] Teixeira FL, Chew WC. Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates. IEEE Microwave Guided Wave Lett. 7(11), 371-373 (1997).
[20] Chen C, Nehmetallah G, Tayebati P, et al. Computation of tightly-focused laser beams with the FDTD method. Opt Express. 18(17), 18300-18316 (2010).
[21] Török P, Higdon PD, Wilson T. On the general properties of polarised light conventional and confocal microscopes. Opt Commun. 148(4-6), 300-315 (1998).
[22] Wolf E. New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources. J Opt Soc Am. 72(3), 343-351 (1982).
[23] Damania D, Subramanian H, Tiwari AK, et al. Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture. Biophysical Journal. 99(3), 989-996 (2010).
[24] Ruh D, Subramanian H, Theodossiou T, Backman V. Review of interferometric spectroscopy of scattered light for the quantification of subdiffractional structure of biomaterials. Journal of Biomedical Optics. 22(3), 030901 (2017).
[25] Liu Y, Li X, Kim YL, Backman V. Elastic backscattering spectroscopic microscopy. Opt Lett. 30(18), 2445-2447 (2005).
[26] Mishchenko MI, Travis LD, Lacis AA. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press (2002).
[27] Kriukova E, Mazurenka M, Marcazzan S, Glasl S, Quante M, Saur D, Tschurtschenthaler M, Puppels GJ, Gorpas D, Ntziachristos V. Hybrid Raman and Partial Wave Spectroscopy Microscope for the Characterization of Molecular and Structural Alterations in Tissue. Journal of Biophotonics 17(12), e202400330 (2024). DOI: 10.1002/jbio.202400330
[28] Kriukova E, Mazurenka M, Marcazzan S, Tschurtschenthaler M, Puppels G, Glasl S, Saur D, Jesinghaus M, Pouliou M, Agelopoulos M, Klinakis A, Quante M, Ripoll J, Ntziachristos V, Gorpas D. Probing Field Cancerization in the Gastrointestinal Tract Using a Hybrid Raman and Partial Wave Spectroscopy Microscope. Analytical Chemistry 97(24), 12642-12653 (2025). DOI: 10.1021/acs.analchem.5c00954
[29] Çapoğlu, I. R. Angora User's Guide: A finite-difference time-domain (FDTD) electromagnetic simulation software for version 0.18.5 and later. Ver. 0.18.5 and later (2012).
校內:2027-08-31公開