簡易檢索 / 詳目顯示

研究生: 林世雄
Lin, Shi-Xiong
論文名稱: 金屬基板置換對GaN基LED輸出特性改善之研究
Investigation on output characteristics improvement of GaN-based LED by metallic-substrate replacement
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 96
中文關鍵詞: 接面溫度垂直結構
外文關鍵詞: junction temperature, vertical structure
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在製備垂直元件的過程中,基板置換技術是相當關鍵極且重要的。它除了實現垂直導通的電流路徑,更可提供元件熱能傳導之散熱路徑。在本文中,我們採用導電及導熱性良好的金屬銅基板,配合雷剝技術完成垂直結構元件與傳統藍寶石基板上橫向元件相比較,其所製作之元件在注入電流為350mA時,順向壓降(VF)為3.59V同時光輸出增加96%。同時透過量測峰波長(peak wavelength)與電流相依關係,顯示導電性良好的金屬銅基板對於元件的熱積聚集效應提供了顯著的改善效果。接著由接面溫度量測,得知具金屬銅基板之元件,將可有效抑制接面溫度之提升,並使得元件可靠度獲得改善。

    For the fabrication of vertical thin-GaN light-emitting diode(LED), substrate transfer techniques play an important role. It not only enables vertical conduction, but also provide device a way of heat conduction. In this paper, we use copper substrates which has excellent electrical conduction and heat conduction metal to combine laser lift-off (LLO) technology to compare with conventional sapphire substrate LEDs. At 350mA,a forward voltage drop (VF) of 3.59V and an improvement in light output power (Lop) of 96%. Using measure peak wavelength depend on the current, the heat collect effect improved with the conductivity well metal copper substrates. Through measure of junction temperature, a result can be available that both junction temperature suppressed and the reliability raised by utilizing copper as metal substrate on devices.

    第一章 緒論...............................................................................................1 1.1 研究背景.......................................................................................1 1-2 研究動機.......................................................................................2 第二章 理論基楚......................................................................................4 2-1 發光二極體基本原理...................................................................4 2-2 熱傳導性質 ……………………………………… ……………5 2-2-1 熱傳係數(Thermal Conductivity)...................................5 2-2-2 熱傳導的經典理論............................................................6 2-2-3 量子理論............................................................................8 2-3 雷射與雷射加工原理.................................................................11 2-3-1 雷射原理..........................................................................11 2-3-2 雷射共振腔......................................................................15 2-4 傳輸線模型(Transmission-line-model;TLM)理論..........15 2-5 接面溫度量測原理.....................................................................17 第三章 基本製程實驗............................................................................20 3-1 蝕刻製程.....................................................................................20 3-1-1 濕式蝕刻..........................................................................20 3-1-2 乾式蝕刻..........................................................................21 3-1-3 反應式離子蝕刻的基本原理..........................................24 3-2 濺鍍製程.....................................................................................28 3-3 微影製程.....................................................................................29 3-4 蒸鍍製程.....................................................................................29 3-5 退火.............................................................................................30 3-6 銅電鍍製程.................................................................................30 3-7 雷射剝離製程.............................................................................33 第四章 高功率氮化鎵發光二極體元件製程步驟及結果討論………35 4-1 電鍍參數對銅鍍層電性影響之討論.........................................34 4-1-1 不同電流密度對鍍層電性之影響..................................34 4-1-2 不同鍍層厚度對電性之影響..........................................36 4-1-3 退火處理對鍍層電性之影響..........................................37 4-2 高功率LED元件製作...............................................................38 4-2-1 基板清洗過程..................................................................39 4-2-3 黃光微影技術(photolithography) 定義元件孤立(isolation)區域...........................................................................40 4-2-4蝕刻製程(reactive ion etching).......................................41 4-2-5 金屬鈍化層(Passivation)製作........................................42 4-2-6 歐姆接觸層與反射層之使用..........................................42 4-2-7 電化學電鍍製換金屬銅基板..........................................44 4-2-8 雷射剝離製程及N型電極的製作.................................44 4-3 高功率垂直結構與傳統橫向式結構LED輸出特性比較.......45 4-3-1 電流-電壓(I-V)特性量測比較........................................46 4-3-2 光功率-電流(L-I)特性量測比較....................................46 4-3-3 發光波長對應不同注入電流量測比較.........................47 4-3-4 接面溫度量測比較..........................................................48 4-3-5 LED熱影像分析..........................................................49

    [1] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys., Vol. 76, pp. 1363, 1994.
    [2] S. C. Binari, K. Doverspike, G. Kelner, H. B. Dietrich, and A. E. Wikenden, “GaN FETs for microwave and high-temperature applications”, Solid-State Electron., Vol. 41, pp. 177, 1997.
    [3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano,and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes gro-w on GaN substrates”, Appl. Phys. Lett., Vol. 72, pp. 2014, 1998.
    [4] M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys., Vol. 79, pp. 7433, 1996.
    [5] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices”, J. Appl. Phys., Vol. 86, pp. 1, 1999.
    [6] P. Bhattacharya, “Semiconductor Optoelectronic Devices.” 2nd,
    Prentice Hall
    [7] Nakamura, S. Pearton, D. Fasol, G. “The Blue Laser Diode:the
    complete story”, 2nd, Springer Press.
    [8] R. Singh, D. Doppalapudi, and T. D. Moustakas, L. T. Romano,“ Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition”, Appl. Phys. Lett., Vol. 70, pp. 1089, 1997.
    [9] 陳俊智, “Fe2VGa 1+x之熱電傳輸性質之研究”, 國 立 成 功 大 學物理研究所碩士論文, 2003.
    [10] 李雅明, 固態電子學, 全華科技圖書股份有限公司, 1995.
    [11] 李永春, 準分子雷射微細加工機訓練教材, 國立成功大學機械工程系準分子雷射共同實驗室, 2006.
    [12] D. K. Schroder, “Semiconductor Material And Device Characterization”, John Wiley & Sons, 1998.
    [13] 許義忠,“氮化鎵材料的蝕刻以及金屬接觸之研究”, 成功大學光電工程與科學研究所碩士論文, 2004.
    [14] Y. Xi, J.-Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, and E. F. Schuberta,“Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods”, Appl. Phys. Lett.,Vol. 86, pp. 031907, 2005.

    [15] Y. Xi and E. F. Schubert,“Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method”, Appl. Phys. Lett.,Vol. 85, pp. 12, 2004.

    [16] Wei-Jen Chen, Da-Chuan Kuo, Cheng-Wei Hung, Chih-Chun Ke,Hui-Tang Shen, Jen-Cheng Wang, Ya-Fen Wu, and Tzer-En Nee,“The effect of junction temperature on the optoelectrical properties of green InGaN/GaN multiple quantum well light-emitting diodes”, Proc. of SPIE Vol. pp. 6468, 2007.
    [17] S. Wolf, “Silicon Processing for the VLSI Era”, Vol. 1 Ch.15, lattice Press.
    [18] Sorab k. Ghandhi, “VLSI Fabrication Principles”, John Wiley & Sons, pp. 589, 1994.
    [19] C. Youtsey, I. Adesida, “Smooth n-type GaN surfaces by photoenhanced wet etching”, Appl. Phys. Lett., Vol. 72, pp. 560, 1998.
    [20] C. Y. Chang , S. M. Sze, “ULSI Technology”, McGraw Hill, 1996.
    [21] M. R. Stephen, J. C. Jerome, D. W. William, “Handbook of Plasma Processing Technology”, Noyes Publications, 1990.
    [22] Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. M. Ding, X. D. Hu, T. J. Yu, Z. J. Yang, G. Y. Zhang, “Etching damage and its recovery in n-GaN by reactive ion etching”, Physica B: Condensed Matter, Vol. 334, pp. 188, 2003.
    [23] D. Basak, T. Nakanishi, S. Sakai, “Reactive ion etching of GaN using BCl3, BCl3/Ar and BCl3/ N2 gas plasmas”, Solid-State Electronics, Vol. 44, pp. 725, 2000.
    [24] 莊達人,“VLSI製造技術”, 高立圖書, 2003.
    [25] 李建宜, “以溼式蝕刻研製微機電微波濾波器”, 成功大學電機工程學系微電子所碩士論文”, 2005.
    [26] Sunjung Kim, Jun-Ho Jang , Jeong-Soo Lee , David J. Duquette, “Stress behavior of electrodeposited copper films as mechanical supporters for light emitting diodes”, Electrochimica Acta., vol. 52, pp. 5258, 2007.
    [27] M. Paunovic and M. Schlesinger, “Fundamentals of Electrochemical Deposition”, Wiley, New York., vol. 82, pp. 181, 1998.
    [28] K. M. Latt, K. Lee, T. Osipowicz, and Y. K. Lee,“Properties of electroplated copper thin thin film and its interfacial racial reactions in the EPCu/IMPCu/IMPTaN/SiO2/Si multilayer structure”,Mater.Sci Eng. B: Solid State Adv. Technol., vol. 83, pp. 165, 2001.
    [29] M. E. Gross, C. Lingk, T. Siegrist, E. Coleman, W. L. Brown, K.Ueno, Y. Tsuchiya, N. Itoh, T. Ritzdorf, J. Turner, K. Gibbons, E.Klawuhn, M. Biberger, W. Y. C. Lai, J. F. Miner, G. Wu., and F.Zhang, “Microstructure and texture of electroplated copper in damascene strcutures”, Mater. Res. Soc., vol. 514, pp. 293, 1998.
    [30] W. P. Davey, “Effect of molybdenum electrode annealing on the interface properties between metal and pentacene ”, Phys. Rev., vol. 25, pp. 753, 1925.
    [31] W. C. Gau, T. C. Chang, Y. S. Lin, J. C. Hu, L. J. Chen, C. Y. Chang,and C. L. Cheng, “Copper electroplating for future ultralarge scale integration interconnection”, J. Vac. Sci. Technol., vol. 18, pp. 656, 2000.
    [32] J. O’M. Bockris and G. A. Razumney, “Fundamental Ascepts of electrocrystallization”, Plenum Press, New York, 1967, p.91
    [33] J. W. Dini, “Electrodeposition”, Noyes, New Jersey, vol. 87, pp. 162, 1993.
    [34] J. Amblard, I. Epelboin, M. Froment, and G. Maurin, “Inhibition and nickel electrocrystallization”, J. Appl. Electrochem., vol. 9, pp. 233, 1979.
    [35] J. M. E. Harper, C. Cabral, Jr. P. C. Andricacos, L. Gignac, I. C.Noyan, K. P. Rodbell, and C. K. Hu, “Mechanisms for
    microstructure evolution in electroplated copper thin films near room temperature”, J. Appl. Phys., vol. 86, pp. 2516, 1999.
    [36] 龔柏誠, “氧化鋅之MIS 二極體的研究”, 成功大學電機工程學系微電子所碩士論文”, 2006.
    [37] Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu and Isamu Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation”, Jpn. J. Appl. Phys Part 2-Letters., vol. 28, pp. 2112, 1989.
    [38] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films”, Jpn. J. Appl. Phys., vol. 31, pp. 1258, 1992.
    [39] M. S. Minsky, M. White, and E. L. Hu“Room-temperature photoenhanced wet etching of GaN”,Appl. Phys. Lett., vol. 68, pp. 1531, 1996.
    [40] 楊忠諺、葉源益,“乾式蝕刻於矽微加工及微機電方面之應用”,毫微米通訊,8卷4期:11~17,2001
    [41] J.K Sheu and Y.K. Su, “High-transparency Ni/Au ohmic contact to p-type GaN”,Appl.Phys.Lett., Vol. 74, pp. 19, 1999.
    [42] 方啟鑫, “高反射p型氮化鎵歐姆接觸之研究”,國立中央大學電機所碩士論文
    [43] Hon-Yi Kuo, Shui-Jinn Wang, and Pei-Ren Wang, “ A Sn-based metal substrate technology for the fabrication of vertical-structured GaN-based light-emitting diodes”, Appl.Phys.Lett., vol. 92, pp. 021105, 2008.

    [44] Kui Bao, Xiang Ning Kang, Bei Zhang, Tao Dai, Yong Jian Sun, Qiang Fu, Gui Jun Lian,1 Guang Cheng Xiong, Guo Yi Zhang, and Yong Chen, “Improvement of light extraction from GaN-based thin-film light-emitting diodes by patterning undoped GaN using modified laser lift-off”, Appl.Phys.Lett., vol. 92, pp. 141104, 2008.

    [46] Jun-Seok Ha, S. W. Lee, Hyun-Jae Lee, Hyo-Jong Lee, S. H. Lee, H. Goto, T. Kato, Katsushi Fujii, M. W. Cho, and T. Yao, “The Fabrication of Vertical Light-Emitting DiodesUsing Chemical Lift-Off Process”, IEEE Photonics Technology Letters., vol. 20, pp. 3, 2008.

    [47] Hon-Yi Kuo, Shui-Jinn Wang, Pei-Ren Wang, Kai-Ming Uang, Tron-Min Chen, Shiue-Lung Chen, Wei-Chi Lee, Hong-Kuei Hsu, Jui-Chiang Chou, and Chung-Han Wu, “Use of Elastic Conductive Adhesive as the Bonding Agent for the Fabrication of Vertical Structure GaN-Based LEDs on Flexible Metal Substrate”, IEEE Photonics Technology Letters., vol. 20, pp. 7, 2008.

    [48] Shiue-Lung Chen, Shui-Jinn Wang, Kai-Ming Uang, Tron-Min Chen, Wei-Chi Lee, and Bor-Wen Liou, “ Fabrication of Dicing-Free Vertical-Structured High-Power GaN-Based Light-Emitting DiodesWith Selective Nickel Electroplating and Patterned Laser Liftoff Techniques ”, IEEE Photonics Technology Letters., vol. 19, pp. 6, 2007.

    [49] Yewchung Sermon Wu, Ji-Hao Cheng, and Wei Chih Peng, “Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light-emitting diodes”, Appl.Phys.Lett., vol. 90, pp. 251110, 2007.

    下載圖示 校內:2012-07-16公開
    校外:2015-07-16公開
    QR CODE