簡易檢索 / 詳目顯示

研究生: 顏清章
Yen, Ching-Chang
論文名稱: 一些與線性動態控制問題有關的擾動分析
Perturbation Analysis Related to Linear Dynamical Control Problems
指導教授: 王辰樹
Wang, Chern-Shuh
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 127
中文關鍵詞: 條件數擾動分析極點配置穩定性分析狀態回溯
外文關鍵詞: Condition number, perturbation, pole assignment, stabilization, state feedback, robustness
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十年來控制上的擾動分析已有一些新的發展,並有一些較有效的強健性的演算法被提出。同時也有一些商用軟體,如 Matlab 等,收錄了一些控制問題上有關狀態迴溯極點配置問題的程式。為了比較這些方法的效能, 我們嘗試用條件數的擾動分析來比較數值的效能。在這一篇文章裡,我們也引述並提出一些比較特殊的例子來做數值上的擾動分析並比較效能。並且也做了一些比較完備的解釋。

    In this decade, the computation for pole assignment control problems had some development. Some effective performing of robust algorithms had been proposed. Some
    commercial softwares, Matlab, etc., include these robust algorithms for the pole assignment control problems. For comparing efficiency of these methods, we study on use the perturbation analysis of these algorithms. In this thesis, we illustrate the comparison by some critical examples and hence demonstrate the efficiency of robustness through numerical experiments. Finally, we are trying to make more complete explanations about numerical results based on the comparison of various condition numbers.

    1 Preliminaries 1 1.1 Notation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Perturbation Expansions . . . .. . . . . . . . . . . . 3 1.3 Condition Numbers for y = f(x) . . . . . . . . . . . . 5 1.4 Backward and Forward Errors for y = f(x) . . . . . . . 6 1.5 Fr´echet Derivative . . . . . . . . . . . . . . . . . 8 1.6 Chapter Notes and Summary . . . . . . . . . . . . . . 10 2 Pole Assignment Problems 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . .12 2.2 Controllability . . . . . . . . . . . . . . . . . . . 14 2.3 The existence and uniqueness of the solution to the state feedback pole assignment problem . . . . . . . . . .18 2.4 Chapter Notes and Summary . . . . . . . . . . . . . . 20 3 Two Classical Methods for Solving the State Feedback Pole Assignment Problem 22 3.1 Single-Input Case for SFPAP . . . . . . . . . . . . . 22 3.2 Multi-Input Case for SFPAP . . . . . . . . . . . . . .30 3.3 Chapter Notes and Summary . . . . . . . . . . . . . . 36 4 A Robust Method for Solving the State Feedback Pole Assignment Problem 37 4.1 Introduction . . . . . . . . . . . . . . . . . . . . .37 4.2 The Schur-Newton Algorithms for the Robust State Feedback Pole Assignment Problem . . . . . . . . . . . . .38 4.2.1 Real Eigenvalues . . . . . . . . . . . . . . . . . .39 4.2.2 Complex Eigenvalues . . . . . . . . . . . . . . . . 43 4.3 Chapter Notes and Summary . . . . . . . . . . . . . . 50 5 Conditioning of State Feedback Pole Assignment Problems 51 5.1 Introduction . . . . . . . . . . . . . . . . . . . . .51 5.2 Sun’s Implicit Functions . . . . . . . . . . . . . . .54 5.3 Mehrmann and Xu’s Perturbation Theory . . . . . . . . 59 5.4 The Fr´echet Derivative of the SFPAP . . . . . . . . .62 5.5 Differentiability for various Λ . . . . . . . . . . . 63 5.5.1 Differentiability when Λ is in Jordan Form . . . . .63 5.5.2 Differentiability for General Λ . . . . . . . . . . 66 5.5.3 Differentiability when Λ is in Schur Form . . . . . 67 5.6 Derivatives and Bounds of Derivatives . . . . . . . . 68 5.7 Chapter Notes and Summary . . . . . . . . . . . . . . 74 6 Numerical Implementation 76 7 Miscellaneous Topics 103 7.1 Pole Assignment by Output Feedback . . . . . . . . . 103 7.2 Pole Assignment Problem for Second Order System . . .105 7.3 Robust Pole Assignment for Descriptor System via the Schur Form . . . . . 107 7.4 Iterative Refinement Techniques for the Solution of Linear Systems . . . . 112 8 Conclusions 116 Reference 118

    [1] S. Abul Hasan. Applied Functional Analysis: Numerical Methods, Wavelets, Image Processing, Marcel Dekker, Inc., New York, 2004.
    [2] J. Ackermann. Der Entwurf linearer Regelungssysteme im Zustandsraum, Regelungstechnik und Prozessdatenverarbeitung, vol. 7, pp. 297-300, 1972.
    [3] M. Arnold. Conditioning and Algorithm for the Eigenvalue Assignment Problem, Ph. D.
    thesis, Department of Mathematical Sciences, Northern Illinois University, Dekalb, IL, 1993.
    [4] M. Arnold and B.N. Dalta. An algorithm for multi-input eigenvalue assignment problem,
    IEEE Trans. Automat. Control, AC-35, pp. 1149-1152, 1990.
    [5] R. Bhatia. Matrix Analysis, Springer, New York, 1996.
    [6] A˙ ke Bj¨orck. Iterative refinement of linear least squares solutions I, BIT, Vol. 7,
    pp. 257-278, 1967.
    [7] D. Boley. Computing the Controllability/Observablity of a Linear Time-Invariant
    Dynamic System: A Numerical Approach, Ph. D. thesis, Computer
    Science Department, Stanford University, Stanford, CA, June 1981.
    [8] D. Boley and W.S. Lu. Measuring how far a controllable system is from an uncontrollable system, IEEE Trans. Automat. Control, AC-31, pp. 249- 251, 1986.
    [9] H.J. Bowdler, R.S. Martin, G. Peters and J.H. Wilkinson. Handbook series linear algebra: Solution of real and complex systems of linear equations, Numerische Mathematik, Vol. 8, pp. 217-234, 1966.
    [10] J.W. Brewer. Kronecker Products and Matrix Calculus in System Theory, IEEE Transactions on Circuits and Systems, CAS. 25, pp. 772-781, 1978.
    [11] R.W. Brockett and C.I. Byrnes. Multivatiable Nyquist criteria, root loci, and pole placement: a geometric viewpoint, IEEE Trans. Automat. Control, AC-26, pp. 271-284, 1981.
    [12] W.L. Brogan. Application of a determinant identity to pole-placement and observer
    problems, IEEE Trans. Automat. Control, AC-19, pp. 612-614, 1974.
    [13] R. Bru, J. Mas and A.M. Urbano. An algorithm for the single-input pole assignment problem, SIAM J. Matrix Anal. Appl., vol. 15, pp. 393-407, 1994.
    [14] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek and J. Kurzak. Mixed precision iterative refinement techniques for the solution of dense linear systems,
    International Journal of High Performance Computer Applications, Vol. 21, pp. 457-466, 2007.
    [15] R. Byers and S.G. Nash. Approaches to robust pole assignment, Int. J. Control, vol. 49, pp.97-117, 1989.
    [16] D.Y. Cai and D.L. Chu. A new algorithm for pole placement using state feedback, Math. Numer. Sinica, vol. 12, pp.86-90, 1990.
    [17] D.Y. Cai and Q.J. Zhou. A new algorithm for the robust complex pole assignment of multivariable systems, Control Theory and Applications, vol. 6, pp.57-64, 1989.
    [18] C.H. Chen. On a numerical method for robust pole assignment by linear output feedback, J. Comput. Math., vol. 6, pp. 59-67, 1988.
    [19] E.K.-W. Chu. A pole assignment algorithm for linear state feedback, Systems Control Lett, vol. 49, pp. 289-299, 1986.
    [20] E.K.-W. Chu. A canonical form and a state feedback pole assignment algorithm for descriptor systems, IEEE Trans. Automat. Control, AC-33, pp. 1114-1125, 1988.
    [21] E.K.-W. Chu. On multiple eigenvalues of matrices depending on several parameters,
    SIAM J. Numer. Anal., vol. 27, pp. 1368-1385, 1990.
    [22] E.K.-W. Chu. On the Control of Second-Order Systems, Technical Report, 2009.
    [23] E.K.-W. Chu. Optimization and pole assignment in control system, Int. J. Applied
    Maths. Comp. Sci., vol. 11, pp. 1035-1053, 2001.
    [24] E.K.-W. Chu. Pole assignment for second-ordered systems, Mech. Syst. Signal
    Processing, vol. 16, pp. 35-59, 2002.
    [25] E.K.-W. Chu. Pole assignment via the Schur form, Syst. Control Letts., vol. 56,
    pp. 303-314, 2007.
    [26] E.K.-W. Chu and B.N. Datta. Numerically robust pole assignment for secondorder
    systems, Int. J. Control, vol. 64, pp. 1113-1127, 1996.
    [27] E.K.-W. Chu and Tiexiang Li. A Schur-Newton algorithm for robust pole assignment,
    Taiwanese J. Maths., vol. 11, pp. 1485-1502, 2007.
    [28] E.K.-W. Chu, Chern-Shuh Wang, Chang-Yi Weng and Ching-Chang Yen. Conditioning of State Feedback Pole Assignment Problems, to appear in TJM.
    [29] C.L. Cox and W.F. Moss. Backward error analysis for a pole assignment algorithm,
    SIAM J. Matrix Anal. Appl., vol. 10, pp. 1159-1171, 1989.
    [30] C.L. Cox and W.F. Moss. Backward error analysis for a pole assignment algorithm
    II: The complex case, SIAM J. Matrix Anal. Appl., vol. 13, pp. 113-117, 1992.
    [31] B.N. Datta. An algorithm to assign eigenvalues in a Hessenberg matrix: single
    input case, IEEE Trans. Automat. Control, AC-5, pp. 414-417, 1987.
    [32] B.N. Datta. Numerical Methods for Linear Control Systems Design and Analysis,
    Academic Press, 2003.
    [33] B.N. Datta and K. Data. Efficient parallel algorithms for controllability and eigenvalue
    assignment problems, Pro. 25th IEEE Conf. Decision and Control, Athens, Greece, pp. 1611-1616, 1986.
    [34] E.J. Davison. On Pole Assignment in Multi-input Linear Systems, IEEE Trans.
    Automat. Control, AC-13, pp. 747-748, 1968.
    [35] E.J. Davison. On pole placement in linear systems with incomplete state feedback,
    IEEE Trans. Automat. Control, AC-15, pp. 348-351, 1970.
    [36] G.R. Duan. Rpbust eigenstructure assignment via dynamical compensators, Automatica, vol. 29, pp. 469-474, 1993.
    [37] J. Demmel, Y. Hida, W. Kahan, X.S. Li, S. Mukherjee and E.J. Riedy. Error
    bounds from extra precise iterative refinement, Technical Report, UCB/CSD-04-
    1344, Computer Science Division, University of California at Berkeley, 2005.
    [38] R. Eising. Between controllable and uncontrollable, Syst. Control Lett., Vol. 4,
    pp. 263-264, 1984.
    [39] L.R. Fletcher. An intermediate algorithm for pole placement by output feedback
    in linear multivariable control systems, Int. J. Control. vol. 31, pp. 1121-1136, 1980.
    [40] L.R. Fletcher. An inverse eigenvalue problem from control theory, in Nnumerical
    Treatment of Inverse Problems for Differential and Integral Equations,eds. P.
    Deuflhard and E.Hairer, Birkhauser, Boston, pp. 161-170, 1983.
    [41] F.R. gantmacher. The Theory of Matrices, Volume One, Chelsea Publishing Company, New York, 1959.
    [42] F.R. gantmacher. The Theory of Matrices, Volume Two, Chelsea Publishing Company, New York, 1959.
    [43] G.H. Golub and C.F. Van Loan. Matrix Computations, Second Edition, Johns
    Hopkins University Press, Baltimore, MD, 1989.
    [44] A. Graham. Kronecker Products and Matrix Calculus with Applications, Wiley,
    New York, 1981.
    [45] C. He, A.J. Laub and V. Mehrmann. Placing plenty of poles is pretty preposterous,
    Technical Report SPC 95-17, Technische Universit¨at Chemnitz-Zwickau, Germany, 1995.
    [46] P. Henrici. Bounds for iterates, inverses, spectral variation and the field of values
    of nonnormal matrices, Numer. Math. vol. 4, pp. 24-40, 1962.
    [47] M. Heymann. On pole assignment in multi-input controllable linear systems, IEEE
    Trans. Automat. Control, AC-13, pp. 748-749, 1968.
    [48] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms, Society for
    Industrial and Applied Mathematics, Philadelphia, 2002.
    [49] Nicholas J. Higham. Functions of Matrices: Theory and Computation, Society for
    Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.
    [50] N.J. Higham, M. Konstantinov, V. Mehrmann and P. Petkov. Sensitivity of computational control problems, Numerical Analysis Report 424, Manchester Centre
    for Computational Mathematics, University of Manchester, Manchester, U.K., 2003.
    [51] R.A. Horn and C.R. Johnson. Matrix Analysis, Cambridge University Press, London,
    1985.
    [52] R.A. Horn and C.R. Johnson. Topic in Matrix Analysis, Cambridge University
    Press, London, 1991.
    [53] X. Jin and Y. Wei. Numerical Linear Algebra and Its Applications, Science Press,
    Beijing, 2004.
    [54] T. Kailath. Linear Systems, Prentice-Hall, 1980.
    [55] J. Kautsky, N.K. Nichols and P. Van Dooren. Robust pole assignment via in linear
    state feedback, Int. J. Control, vol. 41, pp. 1129-1155, 1985.
    [56] H. Kimura, Pole Assignment by Gain Output Feedback, IEEE Trans. Automatic
    Control, AC-20, pp. 509-516, 1975.
    [57] M.M. Konstantinov, N.D. Christov and P.Hr. Petkov. Perturbation analysis of
    linear control problems, IFAC 10th Congress, vol. 9, pp. 16-21, 1987.
    [58] M.M. Konstantinov and P.Hr. Petkov. Conditioning of linear state feedback, Report
    93 61, Department of Engineering, Leicester University, Leicester, U.K., November 1993.
    [59] M.M. Konstantinov and P.Hr. Petkov and N.D. Christov. Conditioning of the
    output pole assignment, in Proc. 3rd European Control Conference, vol. 3, pp.
    2072-2077, 1995.
    [60] M.M. Konstantinov, P.Hr. Petkov and N.D. Christov. Sensitivity analysis of the
    feedback synthesis problem, IEEE Trans. Automat. Control, AC-42, pp. 568-573,
    1997.
    [61] P. Lancaster and M. Tismenetsky. The Theory of Matrices, Second Edition, Academic
    Press, New York, 1985.
    [62] Tiexiang Li, E.K.-W. Chu and Wen-Wei Lin. Robust pole assignment for ordinary
    and descriptor system via the Schur form, Numerical Linear Algebra in Signals,
    Systems, and Control, pp. 341-365, 2011.
    [63] D.G. Luenberger. Canonical forms for linear multivariable systems, IEEE Trans.
    Automat. Control, AC-12, pp. 290-293, 1967.
    [64] Mathworks. MATLAB User's Guide, 2002.
    [65] H. Minc. Nonnegative Matrices, A Wiley-Interscience Publication, New York,
    1988.
    [66] C.B. Moler. Iterative refinement in floating point, J. ACM., vol. 14, no. 2, pp.
    316-321, 1967.
    [67] V. Mehrmann and H. Xu. An analysis of the pole placement problem. I. The
    single-input case, Electron. Trans. Numer. Anal., vol. 4, pp. 89-105, 1996.
    [68] V. Mehrmann and H. Xu. An analysis of the pole placement problem. II. The
    multi-input case, Electron. Trans. Numer. Anal., vol. 5, pp. 77-97, 1997.
    [69] V. Mehrmann and H. Xu. Numerical methods in control, J. Comput. Appl. Math.,
    vol. 123, pp. 371-394, 2000.
    [70] D.S. Miminis. Numerical algorithm for the pole assignment problem, PhD Dissertation, School of Computer Science, McGill University, Montreal, Quebee,
    Canada, 1985.
    [71] D.S. Miminis and C.C. Paige. An algorithm for pole assignment of time invariant
    linear systems, Int. J. Control, vol. 35, pp. 341-354, 1982.
    [72] D.S. Miminis and C.C. Paige. A QR-like approach for the eigenvalue assignment
    problem, in Proceedings of the 2th Hellenic Conference on Mathematics and Informatics, Athens, Greece, Sept. 1994.
    [73] H. Neudecker. Some Theorems on matrix differentiation with special reference to
    Kronecker matrix products, Journal of the American Statistical Association, vol.
    64, pp. 953-963, 1969.
    [74] N.K. Nichols. On computational algorithms for pole assignment, IEEE Trans.
    Automat. Control, AC-31, pp. 643-645, 1986.
    [75] C.C. Paige. ProPerties of numerical algorithms related to computing controllability,
    IEEE Trans. Automat. Control, AC-26, pp. 130-138, 1981.
    [76] B.N. Parlett. The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood
    Cliffss, 1980.
    [77] R.V. Patel, A.J. Laub and P.M. Van Dooren. Numerical Linear Algebra Techniques
    for Systems and Control, IEEE Press, New York, 1994.
    [78] R.V. Patel and P. Misra. Numerical algorithms for eigenvalue assignment by state
    feedback, Proc. IEEE, vol. 72, pp. 1755-1764, 1984.
    [79] P.Hr. Petkov, N.D. Christov and M.M. Koustantinov. A computational algorithms
    for pole assignment of linear multi-input systems, IEEE Trans. Automat. Control,
    AC-31, pp. 1044-1047, 1986.
    [80] J. Qian, M.S. Cheng and S.F. Xu. A new algorithms for pole assignment of singleinput linear systems using state feedback, Science in China Ser: A Mathematics, vol. 48, pp. 307-321, 2005.
    [81] A. Quarteroni, R. Sacco and F. Salieri. Numerical Mathematics, volume 37 of
    Texts in Applied Mathematics, Springer-Verlag, New York, 2000.
    [82] J.R. Rice. A theory of condition, SIAM J. Numer. Anal., vol. 3, no. 2, pp. 287-310,
    1966.
    [83] Y. Saad. Projection and deation method for partial pole assignment in linear state
    feedback, IEEE Trans. Automat. Control, AC-33, pp. 290-297, 1988.
    [84] Y. Saad. Numerical Methods for Large Eigenvalue Problems, Manchester University
    Press, Uk, 1992.
    [85] S.R. Searle. Matrix Algebra Useful For Statistics, Wiley, New York, 1982.
    [86] B. Shafai and S.P. Bhattacharyya. An algorithms for pole assignment in high order
    multivariable systems, IEEE Trans. Automat. Control, AC-33, pp. 870-876, 1988.
    [87] W.H. Steeb. Kronecker product of matrices and applications , Wissenschaftsverlag,
    Mannheim, 1991.
    [88] G.W. Stewart. Introduction to Matrix Computations, Academic Press, 1973.
    [89] G.W. Stewart. Matrix Algorithms: Volume I. Basic Decompositions, SIAM,
    Philadelphia, 1998.
    [90] G.W. Stewart. Matrix Algorithms: Volume II. Eigensystems, SIAM, Philadelphia,
    2001.
    [91] G.W. Stewart and Ji-guang Sun. Matrix Perturbation Theory, Academic Press,
    New York, 1991.
    [92] J.G. Sun. On numerical methods for robust pole assignment in control system
    design, J. Comput. Math., vol. 5, pp. 119-134, 1987.
    [93] J.G. Sun. A note on pole assignment, Math. Numer. Sinica, vol. 10, pp. 438-443,
    1988.
    [94] J.G. Sun. Perturbation analysis of the pole assignment problem, SIAM J. Matrix
    Anal. Appl., vol. 17, pp. 313-331, 1996.
    [95] J.G. Sun. Stability and Accuracy: Perturbation Analysis of Algebraic Eigenprob-
    lems (book manuscript), Technical Report UMINF 98-07, Ume˚a University, Department of Computing Science, 1998.
    [96] Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra, Society for
    Industrial and Applied Mathematics, Philadelphia, 1997.
    [97] M. Valasek and N. Olgac. Efficient pole placement technique for linear time-variant
    SISO systems, IEEE Proc. Control Theory Appl., vol. 142, pp. 451-458, 1995.
    [98] M. Valasek and N. Olgac. Efficient eigenvalue assignments for general linear MIMO
    systems, Automatica, vol. 31, pp. 1605-1617, 1995.
    [99] P. Van Dooren. The generalized eigenstructure problem in linear system theory,
    IEEE Trans. Automat. Control, AC-26, pp. 111-129, 1981.
    [100] A. Varga. A Schur method for pole assignment, IEEE Trans. Automat. Control,
    AC-27, pp. 517-519, 1981.
    [101] A. Varga. Robust pole assignment via Sylvester equation based state feedback
    parametrization, Proceedings of the 2000 IEEE International Symposium on
    Computer-Aided Control System Design, Alaska, USA, September 25-27, 2000.
    [102] R.S. Varga. Matrix Iterative Analysis, Second Edition, Springer-Verlag, Berlin,
    2000.
    [103] J.H. Wilkinson. Rounding Errors in Algebraic Processes, Prentice Hall, 1963.
    [104] W.M.Wonham. On Pole Assignment in Multi-input Controllable Linear Systems, IEEE Trans. Automat. Control, AC-12, pp. 660-665, 1967.
    [105] W.M. Wonham. Linear Multivariable Control: A Geometric Approach, Second
    Edition, Springer-Verlag, New York, 1979.
    [106] S.F. Xu. An introduction to inverse algebraic eigenvalue problems, Peking University Press, Beijing, 1998.
    [107] 段廣仁. 線性系統理論. 2版. 哈爾濱: 哈爾濱工業大學出版社, 2004.
    [108] 黃琳. 系統與控制理論中的線性代數. 北京: 科學出版社, 1990.
    [109] 黃琳. 穩定性理論. 北京: 北京大學出版社, 1992.
    [110] 盧志桓. 控制論引論. 北京: 北京師範大學出版社, 1994.
    [111] 呂碧湖. 線性系統理論基礎. 合肥: 中國科技大學出版社, 1990.
    [112] 孫繼廣. 矩陣擾動分析. 2版. 北京: 科學出版社, 2001.
    [113] 徐樹方. 矩陣計算的理論與方法. 北京: 北京大學出版社, 1995.
    [114] 徐樹方. 控制論中的矩陣計算. 北京: 高等教育出版社, 2011.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE