簡易檢索 / 詳目顯示

研究生: 曾冠華
Tseng, Kuan-hua
論文名稱: 水下聲波之寬頻掃描成像及非線性應用
The Wideband Imaging and Nonlinear Application of Underwater Acoustic Waves
指導教授: 李坤洲
Lee, Kun-chou
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 69
中文關鍵詞: 水下聲波成像寬頻掃描非線性負載諧波角度掃描
外文關鍵詞: Image reconstruction, Harmonic, Wideband diversity, Angular diversity, Non-linear load
相關次數: 點閱:102下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文分兩大部份,第一部份主要在建立一個寬頻掃描的水下聲波成像量測系統,第二部份主要是在探討非線性電子電路負載於水下聲波的應用。
    本論文第一部份主要是建立寬頻掃描的水下聲波成像量測系統。為了能夠得到較豐富的傅氏空間資料,所以將使用更多頻率去掃描,以達到寬頻掃描的目的,並且搭配多角度掃描技術,來擷取鋼鐵圓柱體之傅氏空間資料,然後將這些資料經由內插法擺放至直角座標的位置上,最後藉由逆向傅立葉轉換重建影像。藉此了解影像重建原理、傅氏空間擺放方法、二維線性內插法、傅立葉轉換之間的關係與量測校準的重要性。本論文所建立的水下聲波成像量測系統,未來將可應用於海底探測。
    本論文第二部份主要是探討非線性電子電路負載於水下聲波的應用。我們利用非線性電子電路負載的特性,以聲波作為訊號源,發射一單頻訊號,經由水下麥克風接收訊號,再將此訊號經過非線性負載電路,再發射一次,量測最終結果,觀察是否有此單頻訊號的倍頻訊號產生。實驗證明在最後量測到的訊號,除了原先的發射訊號之頻率之外,也包含了多個倍頻之頻率分量訊號。本論文所建立的水下聲波之非線性應用之實驗系統,因為可以自動產生倍頻之頻率分量之訊號,未來可應用於水下潛艇之電子戰,即產生假頻率來欺敵。
    本論文的研究成果,未來將可應用於水下技術,包括海底探測、水下潛艇之電子戰,並可結合水下通訊發展更進階的水下技術應用。

    關鍵詞:水下聲波成像、寬頻掃描、角度掃描、非線性負載、諧波。

    Abstract
    This thesis includes two subjects. Mainly in the first part is established a measurement system of the underwater acoustic with wideband diversity imaging. The second part is applied non-linear electronic circuit load in submarine.
    The first part is to get abundant Fourier space data. In order to achieve the purpose of the wideband diversity, it will be used to scan more frequencies and matching the angular diversity techniques to capture the Fourier space data of metal cylinder and then these scatter data display by bi-linear interpolation to Cartesian coordinates of the position, and finally by two-dimensional inverse Fourier transformation image reconstruction. To understand the principle of image reconstruction, Fourier space display method, two-dimensional linear interpolation method, Fourier transform relationship and the importance of calibration. In this paper, established by measurement of underwater acoustic imaging system, the future can be applied to the seabed to detect.
    The second part, takes the signal source by the acoustic wave, launching a base frequency signal, receive signal by hydrophone and passes the nonlinear circuit launching again. Observes whether to have this base frequency signal or other multi-frequencies. Experiments show that in the final measurement of the signal, in addition to the original frequency signals, it also contains a number of frequency components of the signal frequency. In this paper, the experimental system as can be frequency automatically generated the signal can be applied to the future of underwater submarine electronic warfare.
    The results presented in this thesis can be applied to the future of underwater technologies, including seabed exploration, underwater submarine electronic warfare, and combined with the underwater communication to develop advanced underwater technology.

    Keywords: Image reconstruction, Wideband diversity, Angular diversity, Non-linear load, Harmonic.

    目錄 摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 符號 viii 第一章 簡介 1 1-1 文獻回顧 1 1-2 研究動機 2 1-3 章節概述 3 第二章 水下聲波寬頻掃描成像 4 2-1 散射聲場之理論推導與模擬 4 2-1-1 圓柱體的散射聲場 4 2-1-2 影像重建原理與Ewald球的觀念 13 2-1-3 二維線性內插法 15 2-1-4 金屬圓柱體重建影像之數值模擬 16 2-2 量測系統與儀器設備的介紹 17 2-2-1 實驗儀器介紹 17 2-2-2 量測系統架構 18 2-3 實驗校準方法 18 2-4 實驗結果 19 第三章 水下聲波之非線性應用 49 3-1 非線性微波電路之分析與諧波平衡法 49 3-2 應用非線性負載於水下 51 3-3 實驗結果 52 第四章 結論 64 參考文獻 66 自述 69

    參考文獻
    [1] A. W. Scott, Understanding Microwaves, John Wiley & Sons, 1993.
    [2] K. C. Lee, C. W. Huang, and M. C. Fang, “Radar target recognition by projected features of frequency-diversity RCS,” Progress In Electromagnetic Research, PIER 81, pp. 121-133, 2008.
    [3] K. C. Lee, J. S. Ou, and C. H. Huang, “Angular-diversity radar recognition of ships by transformation based approaches—including noise effects,” Progress In Electromagnetic Research, PIER 72, pp. 145-158, 2007.
    [4] K. C. Lee and J. S. Ou, “Radar target recognition by using linear discriminant algorithm on angular-diversity RCS,” Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, pp. 2033-2048, 2007.
    [5] K. C. Lee, J. S. Ou, and M.C. Fang, “Application of SVD noise-reduction technique to PCA based radar target recognition,” Progress In Electromagnetic Research, PIER 81, pp. 447-459, 2008.
    [6] K. C. Lee, J. S. Ou, M.C. Huang, and M.C. Fang, “A novel location estimation based on pattern matching algorithm in underwater environments,” Applied Acoustics, Vol. 70, pp. 479-483, 2009.
    [7] Lord Rayleigh, The Theory of Sound, 1st ed., Dover Publications, New York, 1945.
    [8] P. M. Morse, Vibration and Sound, 2nd ed., McGraw-Hill, New York, 1948.
    [9] J. J. Faran, Jr., “Sound scattering by solid cylinders and spheres,” J. Acoust. Soc. Am., Vol. 23, pp. 405-418, 1951.
    [10] D. Brill and H. Uberall, “Acoustic waves transmitted through solid elastic cylinders,” J. Acoust. Soc. Am., Vol. 50, pp. 921-939, 1971.
    [11] W. G. Neubauer, R. H. Vogt, and L. R. Dragonette, “Acoustic reflections from elastic spheres. I. Steady-state Signals,” J. Acoust. Soc. Am., Vol. 55, pp. 1123-1129, 1974.
    [12] N. N. Bojarski, “A survey of physical optics inverse scattering identity,” IEEE Trans. Antennas Propagat., Vol. AP-30, No. 3, pp. 980-989, 1982.
    [13] R. M. Lewis, “Physical optics inverse diffraction,” IEEE Trans. Antennas Propagat, Vol. AP-24, No. 3, pp. 308-314, May 1969.
    [14] T. H. Chu and N. Farhat, “Multiple scattering effects in microwave diversity imaging,” Antennas and Propagation Society International Symposium, Vol. 24, pp. 69-72, 1986.
    [15] T. H. Chu and D. B. Lin, “Bistatic microwave diversity imagery,” Antennas and Propagation Society International Symposium, Vol. 2, pp. 1028-1031, 1990.
    [16] T. H. Chu and D. B. Lin “Microwave density imaging of perfectly conducting objects in the near-field region,” IEEE Tans. Microwave Theory and Techniques, Vol. 39, No. 3, pp. 480-487, 1991.
    [17] H. C. Lu and T. H. Chu, “Microwave diversity imaging using six-port reflectometer,” IEEE Tans. Microwave Theory and Techniques, Vol. 47, No. 1, pp. 84-87, 1999.
    [18] 歐俊谷,“應用掃描技術及訊號處理於水中物體之聲波遠場成像”,國立成功大學系統及船舶機電工程研究所,碩士論文,民國97年。(指導教授:李坤洲老師)
    [19] C.-C. Huang and T.-H. Chu, “Analysis of wire scatters with nonlinear or time harmonic loads in the frequency domain,” IEEE Trans. Antennas Propagat., Vol. AP-41, pp. 25-30, Jan. 1993, SCI, EI.
    [20] K. C. Lee and C. W. Huang, “Analysis of nonlinear microwave circuits by particle swarm algorithm,” Journal of Electromagnetic Waves and Applications, vol. 21, pp. 1353-1365, 2007.
    [21] K. C. Lee, “Genetic algorithms based analyses of nonlinearly loaded antenna arrays including mutual coupling effects,” IEEE Transactions on Antennas and Propagation, vol. 51, pp. 776-781, Apr. 2003.
    [22] K. C. Lee, S. C. Cheng, Y. H. Chen, C. H. Wang, and J. Y. Jhang, “Application of radial basis function based neural networks to arrays of nonlinear antennas,” IEEE Antennas and Propagation Society International Symposium, pp. 955-958, 9-14 Jul. 2006.
    [23] 潘卓然,“近場照射金屬物體之微波影像”,國立台灣大學電機工程研究所,碩士論文,民國88年。(指導教授:瞿大雄老師)
    [24] 陳立岱,“合成孔徑技術運用在水中物體之成像”,國立台北科技大學電腦通訊與控制研究所,碩士論文,民國91年。(指導教授:林丁丙、古碧源老師)
    [25] 李坤洲,“金屬圓柱於多像微波成像系統之極化效應”,國立台灣大學電機工程研究所,碩士論文,民國80年。(指導教授:瞿大雄老師)
    [26] 林丁丙,“多向微波成像系統原理、方法與實驗”,國立台灣大學電機工程研究所,博士論文,民國82年。(指導教授:瞿大雄老師)
    [27] 林峰立,“微波影像之解釋與預測”,國立台灣大學電機工程研究所,碩士論文,民國78年。(指導教授:李學智老師)
    [28] T. H. Chu and D. B. Lin, “Bistatic frequency-swept microwave imaging: principle, methodology and experimental results,” IEEE Trans. Microwave Theory Tech., vol. 41, No.5, pp. 855-861, May 1993.
    [29] H. J. Li, G. T. Huang, and S. L. Yen, “Nonuniformly spaced array imaging,” IEEE Tans. Antennas Propagat., Vol. 41, No. 3, pp. 278-286, 1993.
    [30] K. S. Kundert and A. Sangiovanni-Vincentelli, “Simulation of nonlinear circuit in frequency domain,” IEEE Trans. Computer-Aided Design, vol. CAD-5, pp. 521-535, Oct. 1986.

    下載圖示 校內:2014-07-17公開
    校外:2014-07-17公開
    QR CODE