簡易檢索 / 詳目顯示

研究生: 劉志鴻
Liu, Jihn-Hong
論文名稱: 體外模擬探討胸主動脈支架位移
In-vitro Thoracic Stent Graft Migration on a Mock Circulation Loop
指導教授: 尤芳忞
Yu, Fan-Ming
甘宗旦
Kan, Chung-Dann
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 76
中文關鍵詞: 內套膜支架治療支架位移摩擦力
外文關鍵詞: Endovascular aneurysm repair, stent graft migration, friction force
相關次數: 點閱:137下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胸主動脈內支架手術(Thoracic Endovascular aneurysm repair)是將「胸主動脈支架」植入主動脈瘤血管內,並有效地將病變的血管瘤阻隔開來,達到治療的目的。一般來說進行此項手術有可能會有內滲漏的併發症,本論文主要探討支架位移所導致第一型內滲漏。胸主動脈支架主要是利用外徑的大小來產生徑向力(radial force)來支撐在胸主動脈壁上,故本論文主要針對三家不同廠牌的支架在不同的管徑大小(oversize)置入體外模擬循環系統內,在最接近人體的環境下進行拉力測試(pullout test),取得當支架位移時所需要的摩擦力(friction force),並取得支架與管壁之間的摩擦係數(coefficient of friction)進而找出各廠牌的最佳表現的支架管徑,並比較支架在不同金屬材質下的表現情形。

    Thoracic Endovascular aneurysm repair (TEVAR) has developed into a mainstream surgical option for the management of thoracic aortic aneurysm. This operation is using stent graft to implant in the aneurysm site, and the blood would flow in the stent graft to keep the aneurysm from rupture. The type I endoleak caused by migration of stent graft is still the serious complication for patient who under TEVAR. Stent graft oversize is the important factor which is defined as the percentage of how much stent graft diameter is larger than the inner or outer aortic wall diameter, and another factor is the material of stent graft. This thesis would discuss different oversize stent grafts on an in-vitro mock circulation loop system which can simulate human’s pulsate flow and doing stent graft pullout force test. The friction force would be obtained and evaluate the performance of stent graft under different diameter (oversize).

    中文摘要 I Abstract II 誌謝 III Contents IV Table Contents VII Figure Contents VIII Symbols XI 中文主文題要 XII 第一章 緒論 XII 第二章 理論分析 XIII 第三章 實驗設備、方法與步驟 XIV 第四章 結果與討論 XV 第五章 結論與建議 XVI Chapter 1 Introduction 1 1-1 Preface 1 1-2 Introduction of EVAR, endoleak and stent graft migration 2 1-2-1 Introduction of EVAR 2 1-2-2 Endoleak classification 4 1-2-3 Migration of stent graft 7 1-3 Literature reviews 7 Chapter 2 Theoretical Analysis 10 2-1 Friction Force and coefficient of friction 10 2-1-1 Definition of the friction force 10 2-1-2 Definition of coefficient of friction 11 2-2 Introduction to three brands of stent graft 13 2-2-1 Valiant stent graft 13 2-2-2 Zenith stent graft 13 2-2-3 Gore TAG stent graft 14 2-3 Property of materials in stent graft 14 2-3-1 Nitinol 14 2-3-2 Stainless steel 15 2-3-3 Polyethylene terephthalate 16 2-3-4 ePTFE 17 2-3-5 Polyurethane 18 2-4 Cylindrical pressure vessels 19 2-4-1 Free Body Segment Method 19 2-4-2 Elasticity Method 21 2-4-3 Relation of Radial Interference and Contact Pressure 24 Chapter 3 Experiment Apparatus and Testing Methods 27 3-1 Components of mock circulation loop 27 3-1-1 Left ventricle model 27 3-1-2 Solenoid valve and air-reserve tank 27 3-1-3 Spring compliance and syringe compliance 28 3-1-4 Model of thoracic aorta 30 3-1-5 Stent grafts 30 3-1-6 Temperature controller and heating rod 30 3-1-7 Magnet pump 31 3-2 Measurement equipments 31 3-2-1 Driving system and data acquisition 31 3-2-2 Pressure transducer 32 3-2-3 Ultrasonic flowmeter 32 3-2-4 Force gauge 33 3-2-5 Syringe pump 33 3-2-6 Material tensile system 33 3-3 Testing methods and procedures 34 3-3-1 Comparison of pullout force device design 34 3-3-2 Pullout force test of stent graft in mock circulation loop 35 3-4 Analysis with coefficient of friction 36 Chapter 4 Results and Discussion 37 4-1 Pullout force test with material tensile testing system 37 4-2 Pullout force test with force gauge 38 4-3 Pullout force test on a mock circulation loop 38 4-4 Coefficient of friction of the commercial stent grafts. 40 Chapter 5 Conclusion and recommends 41 References 42 Table 1.1 Classification of endoleak from reference [11] 49 Table 1.2 Lack of device-wall apposition results from reference [20] 49 Table 2.1 Materials of three commercial stent grafts 50 Table 2. 2 Property of stent materials 50 Table 2.3 Property of graft materials 51 Table 4.1 Friction force data 52 LIST OF TABLES Table 1.1 Classification of endoleak from reference [11] 49 Table 1.2 Lack of device-wall apposition results from reference [20] 49 Table 2.1 Materials of three commercial stent grafts 50 Table 2. 2 Property of stent materials 50 Table 2.3 Property of graft materials 51 Table 4.1 Friction force data 52 LIST OF FIGURES Figure 1.1 Diagram of aorta in human’s body from Lee Memorial Health System. 53 Figure 1.2 Type of aneurysm from Health Hype.com. 53 Figure 1.3 Types of endoleak from 54 Figure 1.4 Poor apposition of the stent graft. 54 Figure 2.1 Free body diagram of σL from Mechanics of Material, T,A. Philpot, 2011 55 Figure 2.2 Free body diagram of σh from Mechanics of Material, T,A. Philpot, 2011 55 Figure 2.3 Thick walled cylinder with open ends 56 Figure 2.4 Strains in the element 56 Figure 2.5 Diagram of inner and outer members press fit together 57 Figure2.6 Definition of radial interference 57 Figure 3.1 Left ventricle model 58 Figure 3.2 Ball-shaped polyurethane Left ventricle model 58 Figure 3.3 Solenoid valve and air-reserve tank 59 Figure 3.4 Spring compliance 59 Figure 3.6 Aortic arch model 60 Figure 3.7 Model of descending aorta with aneurysm 60 Figure 3.8 Valiant stent grafts 61 Figure 3.9 Zenith stent grafts 61 Figure 3.10 Gore TAG stent grafts 62 Figure 3.11 Temperature controller 62 Figure 3.11 National Instrument USB6008 63 Figure 3.12 Digital pressure gauge (Mensor Model DPG2400 ) 63 Figure 3.13 Pressure transducer 64 Figure 3.14 LabVIEW pressure calibration vi 64 Figure 3.15 Calibration line 65 Figure 3.16 Ultrasonic flowmeter 65 Figure 3.17 Force gauge 66 Figure 3.18 Syringe pump 66 Figure 3.20 Model filled with 37℃ water 67 Figure 3.21 Comparison of two devices measuring pullout force 67 Figure 3.22 Model with wire tied on the top of stent graft. 68 Figure 3.25 Front panel of air-reserved tank 68 Figure 3.26 Data measured by pressure transducer and flowmeter 69 Figure 3.27 Data measured by ultrasonic flowmeter 69 Figure 3.28 Steel wire connect the bottom of stent graft 70 Figure 3.29 Steel wire connect to the hook of force gauge 70 Figure 3.30 The experiment procedure 71 Figure 4.1 Pullout force test of material tensile software 72 Figure 4.2 Pullout force results of Valiant stent graft 72 Figure 4.3 Stress-strain curve of nitinol from williamson-labs.com 73 Figure 4.4 Pullout force results of Zenith stent graft 73 Figure 4.5 Stress-strain curve of stainless steel 74 Figure 4.6 Pullout force results of Gore TAG stent graft 74 Figure 4.7 Comparison of three stent grafts pullout force results 75 Figure 4.8 Comparison of head of Valiant and Gore TAG 75 Figure 4.9 Comparison of three stent graft COF 76

    REFERENCES

    The University of Chicago Medicine online library. www.uchospitals.edu/online-library/

    The University of Rochester Medical Center online. http://www.urmc.rochester.edu/

    E. Chaikof, J.D. Blankensteijn, P.L. Harris, G. White, C. Zarins V. Bernhard ,“Reporting standards for endovascular aortic aneurysm repair”, Journal of Vascular Surgery, 2002.

    Johns Hopkins Medicine, Heart and Vascular Institute.
    http://www.hopkinsmedicine.org/heart_vascular_institute/
    H.G Beebe, T. Jackson , J.P. Pigott, “Aortic aneurysm morphology for planning endovascular aortic grafts: limitations for conventional imaging method”, Journal of Vascular Surgery, 1995.

    K.W. Johnston , R.B. Rutherford , M.D. Tilson , D.M Shah ,L. Hollier , J.C. Stanley , “Suggested standards for reporting on arterial aneurysms”, Journal of Vascular Surgery, 1991.

    F.J. Veith, R.A. Baum , T. Ohki, “Nature and significance of endoleaks and endotension: summary of opinions expressed at an international conference”, Journal of Vascular Surgery, 2002.

    F.J. Veith , R.A. Baum ,T. Ohki, “Nature and significance of endoleaks and endotension: summary of opinions expressed at an international conference. Journal of Vascular Surgery, 2002.

    Roberto Moraes BastosI, Alvaro Razuk FilhoII, Roberto BlasbalgI, Roberto Augusto CaffaroII, Walter Khegan KarakhanianII, Antonio José RochaIII,”, “A multidetector tomography protocol for follow-up of endovascular aortic aneurysm repair”, Clinics vol.66 no.12 São Paulo 2011.

    K.G. Raman , Missig-Carroll N, T. Richardson, S.C. Muluk , M.S. Makaroun, “Color-flow duplex ultrasound scan versus computed tomographic scan in the sur veillance of endovascular aneurysm repair”, Journal of Vascular Surgery, 2003.

    M.J. van der Laan, C.J. Bakker , J.D. Blankensteijn, L.W. Bartels, “Dynamic CEMRA for endoleak classification after endovascular aneurysm repair”, European Journal of Vascular Surgery, 2006.

    C.K. Zarins , D.A. Bloch , T. Crabtree, “Stentgraft migration after ndovascular aneurysmrepair: importance of proximal fixation”, Journal of Vascular Surgery.

    R.K. Greenberg, A. Turc, S. Haulon, S.D. Srivastava, T.P. Sarac, P.J. O’Hara, “Stent-graft migration: a reappraisal of analysis methods and proposed revised definition”, Journal of Endovascular Therapy, pp. 353–363 ,2004.

    Simulia Inc, Providence, RI, USA, “ABAQUS Analysis User’s Manual version 6.8”.

    N. Rebelo, R. Fu, and M. Lawrenchuk, “Study of a Nitinol Stent Deployed Into Anatomically Accurate Artery Geometry and Subjected to Realistic Service Loading”, Journal of Materials Engineering and Performance, vol 18, pp. 655–663, 2008.

    K. Liffman, I. Sutalo, M. Michael, L. Brown, J. Semmens, and B. Aldham, “Movement and Dislocation of Modular Stent-Grafts Due to Pulsatile Flow and the Pressure Difference Between the Stent-Graft and the Aneurysm Sac”, Journal of Endovascular Therapy, vol 13, pp. 51–61, 2008.

    P. Beer Ferdinand, E. Russel Johnston, Jr, “Vector Mechanics for Engineers six edition McGraw-Hill”, pp 397, 1996.

    L.A. Alicea, J.I. Aviles, I.A. Lopez, L.E. Mulero, and L.A. Sanchez, “Mechanics Biomaterials: Stents. Applications of Engineering Mechanics in Medicine”, GED-University of Puerto Rico, Mayaguez, pp. F1–F14, 2004.

    J. Catanese, D. Cooke, C. Maas, and L. Pruitt, “Mechanical Properties of Medical Grade Expanded Polytetrafluoroethylene: The Effects of Internodal Distance, Density and Displacement Rate”, J. Biomed. Mater. Res., 48, pp. 187–192, 1999.

    Ludovic Canaud, MD, PhD,a,b,c,d Philipe Cathala, MD,b,c Frédéric Joyeux, MD,a,d Pascal Branchereau, MD,a,d Charles Marty-Ané, MD, PhD,a,d and Pierre Alric, MD, PhD,a,b,c,d, “Improvement in conformability of the latest generation of thoracic stent grafts”, Sep 15, 2012.

    Ferdinand P. Beer, E. Russel Johnston, Jr, “Vector Mechanics for Engineers six edition McGraw-Hill”, pp 398, 1996.

    J.L. Meriam, L.G. Kraige, “Engineering Mechanics (fifth ed.). John Wiley & Sons”, pp. 328, 2002.

    Ruina Andy, Rudra Pratap, “Introduction to Statics and Dynamics”, Oxford University Press, pp 713, 2002.

    R.C. Hibbeler, “Engineering Mechanics (Eleventh ed.). Pearson, Prentice Hall”, pp 393, 2002.

    Soutas-Little, W. Robert, Inman Balint, “Engineering Mechanics. Thomson”, pp. 329, 2008.

    Dowson Duncan, “History of Tribology, 2nd Edition”, Professional Engineering Publishing, 1997.

    Kurt Kleiner, “Material slicker than Teflon discovered by accident”, 2008-12-25.

    Coefficient of Friction EngineersHandbook com.
    http://www.engineershandbook.com/Tables/frictioncoefficients.htm

    Deng Zhao, “Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale”, R&D Magazine, October 17, 2012.

    Ludovic Canaud, “Improvement in conformability of the latest generation of thoracic stent graft”, Sep 15, 2012.

    L. Canaud , P. Alric, M. Laurent, T.P. Baum, P. Branchereau, C.H. Marty-Ané , “Proximal fixation of thoracic stent-grafts as a function of oversizing and increasing aortic arch angulation in human cadaveric aortas”, Journal of Endovascular Therapy, 2008.

    L. Canaud, P. Alric, T. Gandet, B. Albat, C. Marty-Ané, J.P. Berthet, “Surgical conversion after thoracic endovascular aortic repair”, The Journal of Thoracic and Cardiovascular Surgery, 2011.

    D. Joseph Bronzino, “The Biomedical Engineering Handbook”, CRC Press, 1999.

    D. Stoeckel, A. Pelton. and T. Duerig, “Self-expanding nitinol stent: material and design considerations” European Radiology, 2004.

    D. Stoeckel, “Nitinol medical devices and inplants. Minimally Invasive Therapy and Allied Technologies”, pp81-88, 2000.

    S. De la Flor, C. Urbina. and F. Ferrando, “Effect of mechanical cycling on stabilizing the transformation behaviour of NiTi shape memory alloys” , Journal of Alloys and Compounds, pp 343-349, 2009.

    Jian Xin and Sergey Safarevich, “Medical Device Materials Proceedings from the Materials & Processes for Medical Devices Conference”, September 2003.

    Y.P. Kathuria, “The potential of biocompatible metallic stents and preventing restenosis. Materials Science and Engineering”, pp 40-48, 2006.

    C.C Shih, C.M Shih, Su, Y.-Y., Su, L.H.J., Chang, M.-S. and Lin, S.-J, “Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications”, Corrosion Science, pp 427-441, 2004.

    Vlodek Gabara, D. Jon. Hartzler, Kiu-Seung Lee, David J. Rodini, and H.H. Yang, “Handbook of fiber chemistry, WIELY”, CRC Press, 2007.

    Wong, J.Y. and Bronzino, J.D. “Biomaterials”, CRC Press, 2007.

    J.C. Palmaz,. “Review of polymeric graft materials for endovascular applications”, Journal of Vascular and Interventional Radiology, 1998.

    J. Catanese, D. Cooke, C. Maas. and L. Pruitt. “Mechanical properties of medical grade expanded Polytetrafluoroethylene: The effects of internodal distance, density, and displacement rate”, Journal of Biomedical Materials Research, vol 48, 187-192, 1999.

    ASM International, “Engineering plastics”, ASM International, 1988.

    J. Catanese, D. Cooke, C. Maas. and L. Pruitt. “Mechanical properties of medical grade expanded polytetrafluoroethylene: The effects of internodal distance, density, and displacement rate”, Journal of Biomedical Materials Research, vol 48, pp187-192, 1999.

    Ho, J.C. and F.G. Shellock, “Magnetic properties of Ni–Co–Cr-base Elgiloy”, Journal of Materials Science: Materials in Medicine, vol 10(9),pp 555-560, 1999.

    Shih, C.-C., Shih, C.-M., Su, Y.-Y., Su, L.H.J., Chang, M.-S. and Lin, S.-J. “Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications”, Corrosion Science, 46(2), pp427-441, 2004.

    J.E. Puskas. and Chen, Y, “Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement”, Biomacromolecules, vol 5(4), pp1141-1154, 2004.

    Suzuki, K., T. Ishiguchi, S. Kawatsu, H. Iwai, K. Maruyama and T. Ishigaki, “Dilatation of stent-grafts by luminal pressures: Experimental evaluation of polytetrafluoroethylene (PTFE) and woven polyester grafts CardioVascular and Interventional Radiology”, vol 24(2), pp94-98, 2001.

    G. Richard. Budynas and J. Keith Nisbet, “Shigley's Mechanical Engineering Design” ,2014.

    http://zh.scribd.com/doc/48248419/Stresses-in-a-Thin-Walled-Cylindrical-Pressure-Vessel
    Stephen Mirdo, “Stresses in a Thin-walled Cylindrical Pressure Vessel”, October 11, 2010.

    J.B. Gupta, “Electronics devices and circuits S.K. Kataria & sons®, Publishers of engineering and computer books”, 2001.

    廖明鴻, “卡爾曼濾波器法於動脈壁局部點性質識別之離體驗證(In-vitro Validation of Kalman Filter-based Identification of Focal Arterial Wall Properties)” , 2013年6月, 成功大學航太所碩士論文.

    Lin KK1, Kratzberg JA, Raghavan ML, “Role of aortic stent graft oversizing and barb characteristics on folding” Journal of Vascular Surgery, 2012 May.

    下載圖示 校內:2019-07-24公開
    校外:2019-07-24公開
    QR CODE