| 研究生: |
林育群 Lin, Yu-Qun |
|---|---|
| 論文名稱: |
建立唾液中二甲基甲醯胺職業暴露之生物指標分析方法 Development of an analytical method to determine salivary biomarkers of the occupational exposure to N,N-dimethylformamide |
| 指導教授: |
張火炎
Chang, Ho-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 現場驗證 、生物指標 、唾液 、生物暴露指標 、方法開發 |
| 外文關鍵詞: | BEI, method development, field validation, Biomarker, saliva |
| 相關次數: | 點閱:121 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:二甲基甲醯胺(N, N-dimethylformamide;DMF)是工業界常用的溶劑之一。目前對於DMF所常用的生物暴露指標為工作日下班前尿中的N-methylformamide(NMF)。但尿液並非能隨時收集且有涉及個人隱私權的問題,本研究擬開發唾液中DMF和NMF的分析方法,作為推估勞工暴露DMF之替代性生物暴露指標物之可適用性。
方法:本研究採用的分析儀器為氣相層析儀 / 熱敏感偵測器(GC / TSD),目前唾液分析採用的前處理方法為取1mL唾液樣本,經離心(5000 rpm,10 min)後,加入0.5 mL的甲醇於0.5 mL之上清液後上機分析並評估以唾液基質所建立的檢量線、偵測下限、精密度、濃度儲存穩定度之品保及品管內容;現場驗證則進行包括跟暴露與實際DMF暴露之52位勞工空氣DMF、工作前、後尿液和唾液的採集和分析,評估空氣暴露和體內各生物偵測指標物間的相關性,探討以唾液中之DMF與NMF作為DMF暴露生物指標之可行性。
結果與結論:
1.本研究所開發的唾液中DMF和NMF之分析方法可通用於唾液0.09~ 75.6mg/L和0.10~80.0mg/L之濃度範圍的定量,而其中0.04mg/L、0.03 mg/L為DMF和NMF之方法偵測下限,且職業性DMF暴露者之唾液中DMF與NMF之濃度值皆低於此偵測下限。足以涵蓋職業暴露DMF之勞工唾液中DMF、NMF之濃度範圍,並且在DMF和NMF分別為0.95mg/L、14.18 mg/L、28.35mg/L和1mg/L、15mg/L、30mg/L的濃度值之精密度誤差皆小於7.5﹪,說明本方法可以應用於職業暴露DMF之唾液中DMF、NMF量測。
2.本分析方法發現,DMF、NMF分別在7.09mg/L、14.18mg/L、28.35mg/L和 7.5mg/L、15mg/L、30mg/L之濃度值的唾液樣本如密封儲存於-20℃冰箱內,在儲存四天內的回收率皆大於80%,所以建議應於採樣完畢後四天內完成分析,已確定唾液中DMF和NMF濃度回收率達至80%以上。
3. 本研究發現唾液中DMF濃度值皆顯著大於NMF濃度值,其與文獻中尿中NMF濃度值恆大於DMF濃度值之情形有所不同 ,推測原因可能是唾液中DMF、NMF產生的機制和尿中不同所產生的情形,詳細機制,尚待進一步研究探討。
4.以現行法規空氣中DMF暴露容許濃度值10ppm,及尿中NMF現行建議BEI值15mg/L(ACGIH, 2001)和尿中DMF值為1.9 mg/L(Chang et al., 2003)為分界點,發現高低暴露者之唾液中DMF與NMF濃度值有顯著差異,顯示以唾液中DMF或NMF濃度值確實可以判別DMF職業族群之空氣中DMF暴露濃度是否高於法規容許暴露值。
5.根據空氣中DMF與尿中NMF分別與唾液中DMF、NMF之線性迴歸方程式推估DMF空氣濃度恕限值為10ppm及尿中NMF BEI值為15mg/L值之唾液生物暴露指標分別為5.91~6.53mg/L與4.85 ~5.70mg/L。
Objective: N,N-dimethylformamide (DMF) has been extensively used as a solvent in many industries. Urinary N,N-methylformamide (NMF) is commonly used as a biomarker of occupational exposure DMF. The constraint of sampling timing availability and the concern of personal privacy, however, warrant a need to develop other possible biomarkers like saliva to more efficiently evaluate the internal dose of occupational exposure to DMF.
Methods: Gas chromatography / thermal sensitive detector (GC / TSD) was used in instrumental analysis. One ml of mixed saliva was collected from healthy unexposed subjects and then was centrifuged at 5000 rpm for 10 min. After centrifugation, 0.5 ml methanol was added to supernatant (0.5 ml). The following items of quality assurance and quality control in laboratory tests were examined: correlation coefficient of the linearity of calibration, method limit of detection (MLOD), precision, and storage stability across fives weeks. The field validation was performed by a six-healthy-volunteer semi-actual exposure field study and actual occupational settings including fifty-two workers directly exposed to DMF from four DMF-related factories. Time-weighted average airborne samples and urine samples at both pre- and post-shifts were collected and analyzed and they were correlated with salivary DMF and NMF for the evaluation of the applicability of salivary biomarkers.
Results and Conclusions:
1.The applicable range of DMF and NMF concentration in saliva were 0.09~ 75.6 mg/L and 0.10~80.0 mg/L and their corresponding MLOD were 0.04mg/L and 0.03mg/L, respectively. The coefficient of variance (CV%) for precision was below 7.5%. Judged by the applicable range, MLOD, and relative small CV%, we concluded that DMF and NMF in saliva could be used as complementary biomarkers of occupational exposure to DMF.
2.In the storage stability tests at -20℃, we found the recovery rates for the saliva spiked with DMF at 7.09, 14.18, and 28.35 mg/L and with NMF at 7.50, 15.00, and 30.00 mg/L were above 80% within four days. In order to avoid sample loss, we hereby suggested that the analysis for the salivary samples should be achieved within four days right after the completeness of sample collection for the samples stored in a -20℃ refrigerator.
3.We found that the levels of salivary DMF were consistently greater than that of NMF, which was different from the observed in urinary samples. One of the possible explanations could be the generation process of DMF and NMF in saliva is different from that in urine. The exact mechanism, however, warrants a further study.
4.We grouped salivary concentrations of DMF and NMF into two categories according to the following cut points: whether their airborne DMF concentrations were greater than the current permissible exposure limit (PEL = 10ppm); urinary NMF were greater than the current biological exposure index (BEI = 15mg/L); and urinary DMF were greater than 1.9mg/L (Chang et al., 2003). We found the salivary DMF and NMF were significantly different between two groups by all cut points, suggesting the salivary DMF and NMF could be appropriate biomarkers to differentiate the exposure over/below the allowable exposure limits.
5.According to the linear regression equations derived from the results, the estimates of the biological exposure indices for salivary DMF and NMF at post-shift were 5.91~6.53mg/L and 4.85~ 5.70 mg /L, respectively, given the workers’ exposure to DMF at 10ppm for eight hours or their urinary NMF were 15 mg/L at post-shift.
A. Casal Lareo, L. Perbellini. Biological monitoring of workers exposed to N,N-dimethylformamide. Dimethylformamide and its metabolisms in urine of exposed workers, Int Arch Environ Health 1995;67:47-52
American Conference of Governmental Industrial Hygienists. Threshold limit values for chemical substances and physical agents and biological exposure indices. ACGIH, Cincinnati, Ohio, USA; 1999
Angerer J. Goen T. Kramer A. Kafferlein HU. N-methylcarbamoyl adducts at the N-terminal valine of globin in workers exposed to N,N-dimethylformamide, Arch Toxicol 1998;72:309-313
Benkirane, S., Nicolas, Aa., Galteau, M. M., Siest, G. Hightly sensitive immunoassays for the determination of cotinine in serum and saliva. Comparison between RIA and an avidin-biotin ELISA. European journal of Clinical Chemistry and Clinical Biochemistry. 1991;29:405-410
Caddy, B. Saliva as a specimen for drug analysis . In R. C. Baselt(Ed.), Advances in analytical toxicology 1984;1:198-254
Cai SX, Huang MY, Xi LQ, Li YL, Qu JB, Kaiwai T, et al. Occupational dimethylformamide exposure. 3. Health effects of dimethylformamide after occupational exposure at low concentrations. International Archives of Occupational & Environmental Health 1992;63(7):461-8
Cai, W. M., Zhu, G. Z., Chen, G. Free phenytoin monitoring in serum and saliva of epileptic patients in china. Therapeutic Drug Monitoring 1993;15:31-34
Cone, E. J., Weddington, W. W. Prolonged occurrence of cocaine in human
saliva and urine after chronic use. Journal of Analytical Toxicology 1989;13:65-68
De Boever, J., Kohen, F. & Vanderkerckhove, D. Direct solid-phase chemiluminescence immunoassay progesterone. Clin. Chem 1986;32:763-767
Drehsen, G., Rohdewald, P. Rapid high-performance thin-layer chromatography of salicylic acid, salicylamide, ethoxybenzamide and paracetamol in saliva. Fournal of Chromatography 1981;223:479-483
Evans JJ, Wilkinson AR, Aickin DR. Salivary estriol concentration during normal pregnancies, and a comparison with plasma estriol. Clin Chem 1984;30(1):120-121
Evans, J. J. Progesterone in saliva does not parallel unbound progesterone in plasma. Clinical Chemistry 1986;32:542-544
Gorodetzky, C. W., Kullberg, M. P. Validity of screening methods for drugs of
abuse in biological fluids. Heroin in plasma and saliva. Clinical Pharmacology and Therapeutics 1974;15:579-587
Graham Cope, Pamela Nayyar, Roger Holder, Gareth Brock and Iain Chapple, Near-patient test for nicotine and its metabolisms in saliva to assess smoking habit, Ann Clin Biochem 2000;37:666-673
Gould, V. J., Turkes, A. O., Grakell, S. J. Gas chromatography-mass spectrometric analysis of salivary testosterone with reference to diethylstiboestrol-treated prostatic cancer patients. Journal of Steroid Biochemistry 1986;24:563-567
Gross, S. J., Worthy, T. E., Nerder, L., Zimmermann, E. G., Soares, J. R.,
Lomax, P. Detection of recent cannabis use by saliva D9-THC radioimmunoassay. Journal of Analytical Toxicology 1985;9:1-5
Groth, U., Prellwitz, W., Janchen, E. Estimation of pharmacokinetic parameters of lithium from saliva and urine. Clinical Pharmacology and Therapeuticas 1989;16:490-498
Heiko Udo Kafferlein and Jurgen Angerer. N-Methylcarbamoylated Valine of Hemoglobin in Human after Exposure to N,N-Dimethylformamide:Evidence for the Formation of Methyl Isocyanate?, Chem. Res. Toxicol 2001;14:833-840
Heiko U. Kafferlein, Jurgen Angerer. Simultaneous determination of two
human urinary metabolism of N,N-dimethylformamide using gas chromatography-thermionic sensitive detection with mass spectrometric confirmation, Journal of Chromatography B 1999;734:285-298
Idowu, O. R., Caddy, B. A review of the use of saliva in the forensic detection of drugs and other chemicals. Journal of the Forensic Science Society 1981;22:123-135
Jürgen A, Thomas G, Axel K, Heiko UK. N-methylcarbamoyl adducts at the N-terminal valine of globin in workers exposed to N,N-dimethylformamide, Arch Toxicol 1998;72:309-313
James L. Repace, Jennifer Jinot, Steven Bayard, Karen Emmons, and S. Kathaine HammondAir Nicotine ans Saliva Cotinine as Indicators of Workplace Passive Smoking Exposure and Risk, Risk Analysis 1998;18:71-83
John T. Bernert, Jr. , James E. MacGuffery, Melissa A. Morrison, and James L. Pirkle. Coparison of Serum and Salivary Cotinine Measurements by a
Sensitive High-Performance Liquid Chromatography-Tanden Mass Spectrometry Method as an Indicator of Exposure to Tobacco Smoke
Among Smokers and Nonsmokers, Journal of Analytical Toxicology 2000;24:333-339
Kawai T, Yasugi T, Mizunuma K, Watanabe T, Cai SX, Huang MY, et al. Occupational dimethylformamide exposure. 2. Monomethylformamide excretion in urine after occupational dimethylformamide exposure. International Archives of Occupational & Environmental Health 1992;63(7):455-60
Kafferlein HU, Angerer J. Simultaneous determination of two himan urinary metabolites of N,N-dimethylformamide using gas chromatography-thermionic sensitive detection with mass spectrometry confirmation, J Chromatogr B. 1999;734:285-298
Kennedy G.L, Biological effect of acetamide, formamide, and their monomethyl and dimethyl derivatives, CRC Critical Review in Toxicology 1986;17(2):129-182
Kimmerle G. Eben A. Metabolism studies of N,N-dimethylformamide Studies in persons, Int Arch Arbeitsmed 1975;34:127-136
Landon, J., Mahmod, S. Distribution of drugs between blood and saliva. In G. F. Read, D. Riad-Fahmy, R. F. Walker, K. Griffiths(Eds.)Immunoassays of steroids in saliva:proceedings of the ninth Tenovus workshop, Cardiff November 1982;47-55
Lyle WH. Spence TW. McKinneley WH. Duckers K. Dimethylformamide and alcohol intolerance. Bri J Ind Med 1979;36:63-66
Lauwerys R R et. Al. Biological surveillance of workers exposed to
dimethylformamide and the influence of skin oritection on its percutaneous absorption)Int Arch Occup Environ Health 1980;45:189-203
Lindsay F. Hofman. Innovative Non- or Minimally-Invasive Technologies for Monitoring Health and Nutritional Status in Mothers and Young Children, American Society for Nutritional Sciences 2001;1621s-1625s
M Imbriani, L. Maestri, P. Marraccini, G. Saretto, A. Alessio, S. Negri, S.
Ghittori. Urinary determination of N-acetyl-S-(N-methylcarbamoyl)cysteine and N-methylformamide in workers exposed to N, N-dimethylformamide Int Arch Occup Environ Health. 2002;75:445-452
Mally, J., Keszei, C., Cserep, G. Theophylline concentration in serum, saliva, and cerebrospinal-fluid in patients with essential tremor. Therapeutic Drug Monitoring 1992;14:135-137
Mandel ID. Saliva. In:Grant D, Stern IB, Listgarten MA, eds. Orban’s periodontics. SST. Louis;CV Mosby, 1988:138
Mandel ID. The diagnostic used of saliva. Oral Med 1990; 19:199
Maxfield M, Barnes J. R, Azar A. Urinary excretion of metabolite following
experimental human exposures to DMF or to DMAC, J Occup Med 1975; 17:506-511
Migliardi, M., Cenderelli, G. Direct radioimmunoassay of testosterone in human saliva. Analytical Chimica Acta 1988;207:161-170
Mraz J,Turecek F. Identification of N-acetyl-S-(N-methyl -carbamoyl)-cysteine, a human metabolite of N,N-dimethylforma- mide-amide and
N-methylformamide. J Chromatogr B 1987;414:399-404
Mráz J, Nohová H. Absorption, metabolism and elimination of N,N-dimethylformamide in humans, Int Arch Environ Health. 1992;64:85-92
Mráz J, Jheeta P, Gescher A, Hyland R, Thummel K, Threadgill MD.
Investigation of the mechanistic basis of N, N-dimethylformamide toxicity. Metabolism of N, N-dimethylformamide and its deuterated isotopomers by cytochrome P450 2E1. Chemical Research in Toxicology. 1993;6(2):197-207
Mraz J, Galova E, Nohova H, Bouskova S. N-methylcarbamoyl adduct with N-terminal valine of globin:a view biomarker of exposure to N, N-dimethylformamide(DMF)in human. Poster presentation at the 4th International Symposium on Biological Monitoring in Occupational and Environmental Health, 1998
Nigg HN, Wade SE. Saliva as a Monitoring Medium for Chemicals, Reviews of Environmental Contamination and Toxicology 1992;Vol. 129
N. Fucci, N. De Giovanni, M. Chiarotti, S. Scarlata. SPME-GC analysis of THC in saliva samples collected with ”EPITOPE” device, Forensic Science International 2001;119:318-321
Paxton, J. W. Measurement of drugs in saliva:A review. Methods and Findings in Experimental and Clinical Pharmacology 1979;1:11-21
Price, D. A., Astin, M. P., Chard, C. R & Addison, G. M. Assay of hydroxyl progesterone in saliva. Lancet 1979;1:368
Prokhorov, A. V., De Moor, C., Pallonen, U. T., Hudmon, K. S., Koehly, L. & Hu, S. Validation of the modified Fagerstrom tolerance questionnaire with salivary continine among adolescents. Addict. Behav. 2000;25:429-433
Riad-Fahmy D, Read GF, Walker RF, Griffiths K. Steroids in saliva for assessing endocrine function. Endocr Rev 1982;3(4)367-395
Ritschel, W. A., Thompson, G. A. Monitoring of drug concentration in saliva:a
non-invasive pharmacokinetic procedure. Methods and Findings in Experimental and Clinical Pharmacology 1983;5:511-525
Swinkels, L. M. J. W., Hoof van, H. J. C., Ross, H. A., Smals A. G. H., Benraad, T. J. Low ratio of androstenedione to testosterone in plasma and saliva of hirsute women. Clinical Chemistry 1992;38:1819-1823
Tetsuo Nomiyama, Hiroshi Nakashima, Yuri Sano, Li Ling Chen, Shigeru Tanaka, Hiroyuki Miyauchi, Tsuneyuki Yamauchi, Haruhiko Sakurai, Kazuyuki Omae Does the polymorphism of cytochrome P-450 2E1 affect the metabolism of N,N-dimethylformamide. Arch Toxicol 2001;74:755-759
Thaysen, J. H., Thorn, N. A., Schwartz, I. L. Excretion of sodium, potassium, chloride and carbon dioxide in human parotid saliva. American Journal of Physiology. 1954;178:155-159
Umstead, G. S., Morales, M., McKercher, P. L. Comparison of total, free, and salivary phenytoin concentration in geriatric patients. Clinical Pharmacy 1986;5:59-62
Vining, R. F., Mcginley, R. A. & Symons, R. G. Homones in saliva:mode of entry and consequent implications for clinical interpretation. Clin. Chem. 1983a;29:1752-1756
Vining, R. F., Mcginley, R. & Rice, B. V. Saliva estriol measurement:an alternative to the assay of serum unconjugated estriol in assessing fetoplacental function. J. Clin. Endocrinol. Metab. 1983b;56:454-460
Vining, R. F., McGinley, R. A., Maksvytis, J. J. & Ho, K. Y. Salivary cortisol:a better measure of adrenal cortical function than serum cortisol. Ann. Clin. Biochem. 1983c;20:329-335
Vining, R. F., McGinley, R. A. Hormones in saliva. Critical Reviews in Clinical Laboratory Sciences 1985;138:365-371
Walter D, Jochim C, Knecht U. Toxicolkinetic study on N, N-dimethylformamide for he re-evaluation of the Biological Tolerance alue(BAT)in Germany. In:Hallier E. Documentation from the 38th annual conference of the German Society of Occupational and Environmental Medicine, Wiesbaden, Germany, Rindt-Druck Fulda. 2000, P619-20
Worthman, C. M., Stallings, J. F. & Hofman, L. F. Sensitive salivary estradiol assay for monitoring ovarian function. Clin Chem. 1990;36:1769-1773
Yamazumi, S., Miura, S. Haloperidol concentration in saliva and serum:determination by the radioimmunoassay method. Intern. Pharmacopsychiat 1981;16:174-183
張火炎,(1997)利用呼氣和唾液作為生物偵測指標, 第四卷第三期:161-174
蔡靜宜,(2002)職業暴露DMF之皮膚吸收與生物偵測, 成功大學環境醫學研究所碩士論文
朱祐民,(2003)應用跟暴露方式探討人造皮工廠暴露環境下N,N-dimethylformamide(DMF)不同暴露途徑之生物偵測, 成功大學環境醫學研究所碩士論文
陳俊璋,(2000)聚尿樹脂及合成皮製造業工廠勞工二甲基甲醯胺暴露研究, 中國醫藥學院碩士論文