簡易檢索 / 詳目顯示

研究生: 吳廷生
Wu, Ting-Sheng
論文名稱: 運用三角形域之譜方法
Spectral Methods using Triangular Domains
指導教授: 鄧君豪
Teng, Chun-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 47
中文關鍵詞: 三角形譜方法高階近似內插節點
外文關鍵詞: pseudospectral, simplex, projection
相關次數: 點閱:143下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統上高階內插近似的點集是以優化的方式求得。本文先介紹一幾何投影的方式來尋求三角形域中適合高階內插近似的點集。我們發現本法所求得的點集亦適合做為高階內插近似的節點, 且利用這些點集所構成的近似函數其近似效果並不遜於傳統的方式所建構的高階內插近似函數。並將此點集配合上高階譜方法應用於二維波方程上, 從建構點集到實際計算做一完整的敘述。

    The nodal sets in simplex for high-order interpolation approximation
    were constructed by some optimal methods in tradition. In this thesis
    we introduce a new method using projection to construct nodal sets
    in simplex, and a general framework of constructing multidimensional
    pseudospectral schemes for simulation wave equation. The nodal sets
    from projection for approximation are as good as the results obtained
    by traditional methods. Stable numerical simulations of model wave
    equations are also conducted. The results are agreed with the theoretical
    analysis.

    第1 章簡介1 第2 章建構三角形域中高階近似多項式的內插節點4 2 - 1 節預備知識與基本概念. . . . . . . . . . . . . . . . 4 2 - 1.1 Lebesgue 常數. . . . . . . . . . . . . . . 4 2 - 1.2 Barycentric 座標. . . . . . . . . . . . . . 5 2 - 1.3 Lagrange內插多項式. . . . . . . . . . . . 8 2 - 2 節幾何投影方式建構內插節點. . . . . . . . . . . . . 10 2 - 3 節數值結果. . . . . . . . . . . . . . . . . . . . . . 16 第3 章二維波方程20 3 - 1 節Wellposeness . . . . . . . . . . . . . . . . . . . 20 3 - 2 節建構計算格式. . . . . . . . . . . . . . . . . . . . 23 3 - 3 節分析穩定性. . . . . . . . . . . . . . . . . . . . . 28 3 - 4 節數值結果. . . . . . . . . . . . . . . . . . . . . . 32 第4 章總結46

    [1] I. Babuˇska and Qi Chen. Approximate optimal points for polynomial
    interpolation of real functions in an interval and in a triangle.
    Comput. Methods Appl. Mech. Engrg., 128:405–417, 1995.
    [2] L. P. Bos. Bounding the lebesgue function for interpolation in a
    simplex. J. Approx. Theory, 38:43–59, 1983.
    [3] Faires Burden. Numercial Methods.
    [4] J. S. Hesthaven. From electrostatics to almost optimal nodal sets
    for polynomial interpolation in a simplex. SIAM J. Numer. Anal.,
    35:655–676, 1998.
    [5] J. S. Hesthaven and C. H. Teng. Stable spectral methods on tetrahedral
    elements. SIAM J. Sci. Comp., 21:2352–2380, 2000.
    [6] M. A. Taylor, B. A. Wingate, and R. E. Vincent. An algorithm
    for computing fekete points in the triangle. SIAM J. Numer. Anal.,
    38:1707–1720, 2000.

    下載圖示 校內:2009-07-24公開
    校外:2009-07-24公開
    QR CODE