簡易檢索 / 詳目顯示

研究生: 王彥儒
Wang, Yan-Ru
論文名稱: 以序列式採樣建立代理模型以優化生質料焙燒條件
Using Sequential Sampling Method to Construct Surrogate Model for Optimization on Torrefaction of Biomass
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 72
中文關鍵詞: Kriging代理模型序列式建模田口法生質料焙燒
外文關鍵詞: Torrefaction, Kriging surrogate model, sequential sampling method, the Taguchi method, single pellet combustion
相關次數: 點閱:179下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於利用Kriging代理模型與序列式建模優化生質料焙燒條件,並與田口法結果進行比較。生質料選用棕梠空果串(empty fruit bunch, EFB)與棕梠空果殼(palm kernel shell, PKS),在四種焙燒條件下取得生質碳(biochar) 並計算PA指標。PA指標是以近似分析所建立的一項指標,其值大小反映出生質物的可燃性。透過代理模型與序列式建模以最少的實驗次數找出最大PA指標的焙燒條件。EFB的案例中表明代理模型對實驗次數的需求確實可以少於田口法所需之次數,但因其PA指標與參數之間呈現線性關係,極值坐落於參數範圍的上下限,以田口法優化EFB案例也可找到全域最佳條件。在PKS的案例中即可看出代理模型的優化結果可保證是全域最佳解,若以田口法依相同實驗次數設計等距的因子水準,即會出現田口法的優化結果是區域最佳解,田口法要找到相似於代理模型的最佳條件則需要多於代理模型所需的實驗次數。

    The purpose of this research is to use the Kriging surrogate model and sequential sampling to optimize the torrefaction conditions of biomass, and to compare with the results of the Taguchi method. The empty fruit bunch (EFB) and palm kernel shell (PKS) were selected to torrefy under four torrefaction conditions, and the PA index was calculated. The PA index is an index established by proximate analysis, and its value reflects the flammability of the biochar or biomass. Through the surrogate model and sequential sampling to find the torrefaction condition of the maximal PA index with fewer experiments. The EFB case shows that the number of experiment surrogate model need for optimization can indeed be less than the number required by Taguchi method, but because of the linear relationship between its PA index and parameters, the extreme value is located at the upper and lower limits of the parameter range, so Taguchi method is used to optimize EFB cases can also find the best conditions in the whole parameter domain. In the case of PKS, it can be seen that the optimization result of the surrogate model is guaranteed to be the global solution in the whole parameter domain. If the Taguchi method is used to design factor levels with the same number of experiments, it will result in the optimization result of the Taguchi method is the local solution. The Taguchi method needs more experiments than the surrogate model to find the optimal conditions similar to the result of the surrogate model.

    摘要 I Abstract II 致謝 III Contents IV List of Tables VI List of Figures VII List of Abbreviations IX Nomenclature X Chapter 1 Introduction 1 1.1 Renewable Energy 1 1.2 Biomass 3 1.2.1 Biomass compounds 3 1.3 Conversion technology 5 1.3.1 torrefaction 6 1.4 Solid fuel combustions 9 1.5 Optimization 10 1.5.1 Surrogate-based analysis and optimization (SBAO) 11 1.5.2 Taguchi method 12 1.6 Motivation 12 1.7 Objective and Methodology 13 Chapter 2 Experimental apparatus and method 15 2.1 Biomass feedstock and material properties 15 2.1.1Biomass Compositional Analysis Procedures 15 2.2 Experimental Apparatus and Process 17 2.2.1 Tubular Furnace 17 2.2.2 Single pellet combustor 18 2.2.3 Laboratory Scale Biomass Burner and Experimental Apparatus 20 2.3 Proximate Analysis Index 22 2.3.1 Proximate analysis procedure 22 2.3.2 PA index 23 2.4 Optimization Method 24 2.4.1 Kriging model 24 2.4.2 Infill criterion 26 2.4.3 Infill criterion with noisy data 27 2.4.4 Design of experiments 27 2.4.5 The Taguchi method 29 2.5 Operational Procedure 32 Chapter 3 Optimization of torrefaction conditions for proximate analysis index 34 3.1 Use Kriging model to optimize the torrefaction conditions 34 3.1.1 The optimization of previous work 34 3.1.2 The optimization of this study using EFB 35 3.2 Use regressing Kriging model to optimize the torrefaction conditions 42 3.2.1 The optimization of EFB 42 3.2.2 The optimization of PKS 49 3.3 Use Taguchi method to optimize the PA−index of EFB 54 Chapter 4 Combustion characteristics of biochar 59 4.1 Single pellet combustion 59 4.2 Flue gas composition of pulverized biochar combustion 65 Chapter 5 Conclusion 68 References 70

    [1] bp. bp Statistical Review of World Energy June 2012. British Petroleum June. 2012.
    [2] Administration(EIA) USEI. Renewable energy explained. 2019.
    [3] World Bioenergy Association. Global Bioenergy Statistics 2019. World Bioenergy Association; 2019.
    [4] statista. Historical carbon dioxide emissions from global fossil fuel combustion and industrial processes from 1758 to 2018. 2019.
    [5] Tong W, Liu Q, Ran G, Liu L, Ren S, Chen L, et al. Experiment and expectation: Co-combustion behavior of anthracite and biomass char. Bioresource technology. 2019;280:412-20.
    [6] Basu P. Chapter 3 - Biomass Characteristics. In: Basu P, editor. Biomass Gasification, Pyrolysis and Torrefaction (Third Edition): Academic Press; 2018. p. 49-91.
    [7] Basu P. Biomass gasification, pyrolysis and torrefaction: practical design and theory: Academic press; 2018.
    [8] Kainthola J, Kalamdhad AS, Goud VV. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochemistry. 2019;84:81-90.
    [9] Mishra P, Krishnan S, Rana S, Singh L, Sakinah M, Ab Wahid Z. Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strategy Reviews. 2019;24:27-37.
    [10] Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S. A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews. 2011;15:2262-89.
    [11] Itskos G, Nikolopoulos N, Kourkoumpas DS, Koutsianos A, Violidakis I, Drosatos P, et al. Chapter 6 - Energy and the Environment. In: Poulopoulos SG, Inglezakis VJ, editors. Environment and Development. Amsterdam: Elsevier; 2016. p. 363-452.
    [12] Radenahmad N, Azad AT, Saghir M, Taweekun J, Bakar MSA, Reza MS, et al. A review on biomass derived syngas for SOFC based combined heat and power application. Renewable and Sustainable Energy Reviews. 2019:109560.
    [13] Santos RGd, Alencar AC. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review. International Journal of Hydrogen Energy. 2019.
    [14] Medic D, Darr M, Shah A, Potter B, Zimmerman J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel. 2012;91:147-54.
    [15] Singh RN. Equilibrium moisture content of biomass briquettes. Biomass and Bioenergy. 2004;26:251-3.
    [16] Pimchuai A, Dutta A, Basu P. Torrefaction of agriculture residue to enhance combustible properties. Energy & Fuels. 2010;24:4638-45.
    [17] Wannapeera J, Fungtammasan B, Worasuwannarak N. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis. 2011;92:99-105.
    [18] Chen W-H, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews. 2015;44:847-66.
    [19] Yang Y, Sun M, Zhang M, Zhang K, Wang D, Lei C. A fundamental research on synchronized torrefaction and pelleting of biomass. Renewable Energy. 2019;142:668-76.
    [20] Chen W-H, Hsu H-J, Kumar G, Budzianowski WM, Ong HC. Predictions of biochar production and torrefaction performance from sugarcane bagasse using interpolation and regression analysis. Bioresource Technology. 2017;246:12-9.
    [21] Lu K-M, Lee W-J, Chen W-H, Liu S-H, Lin T-C. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresource Technology. 2012;123:98-105.
    [22] Zhang C, Ho S-H, Chen W-H, Xie Y, Liu Z, Chang J-S. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Applied Energy. 2018;220:598-604.
    [23] Jones J, Nawaz M, Darvell L, Ross A, Pourkashanian M, Williams A. Towards biomass classification for energy applications. Science in thermal and chemical biomass conversion. 2006;1:331-9.
    [24] Piriou B, Vaitilingom G, Veyssière B, Cuq B, Rouau X. Potential direct use of solid biomass in internal combustion engines. Progress in Energy and Combustion Science. 2013;39:169-88.
    [25] Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Kevin Tucker P. Surrogate-based analysis and optimization. Progress in Aerospace Sciences. 2005;41:1-28.
    [26] Gorissen D, Hendrickx W, Dhaene T. Adaptive Global Metamodeling with Neural Networks2007.
    [27] Jones DR, Schonlau M, Welch WJ. Efficient Global Optimization of Expensive Black-Box Functions. Journal of Global Optimization. 1998;13:455-92.
    [28] Li Y-H, Lin H-T, Xiao K-L, Lasek J. Combustion behavior of coal pellets blended with Miscanthus biochar. Energy. 2018;163:180-90.
    [29] Huang C-W, Li Y-H, Xiao K-L, Lasek J. Cofiring characteristics of coal blended with torrefied Miscanthus biochar optimized with three Taguchi indexes. Energy. 2019;172:566-79.
    [30] Kai-Lin Xiao. Co-Firing Characteristics of Coal Blended with Biochar with Optimal Torrefaction Condition: National Cheng Kung University; 2018.
    [31] Sabil KM, Aziz MA, Lal B, Uemura Y. Effects of torrefaction on the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell. Biomass and Bioenergy. 2013;56:351-60.
    [32] Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science. 1991;74:3583-97.
    [33] Omar R, Idris A, Yunus R, Khalid K, Aida Isma MI. Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel. 2011;90:1536-44.
    [34] Forrester A, Sobester A, Keane A. Engineering design via surrogate modelling: a practical guide: John Wiley & Sons; 2008.
    [35] McKay MD, Beckman RJ, Conover WJ. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 1979;21:239-45.
    [36] León RV, Shoemaker AC, Kacker RN. Performance measures independent of adjustment: an explanation and extension of Taguchi's signal-to-noise ratios. Technometrics. 1987;29:253-65.
    [37] Ghani JA, Choudhury I, Hassan H. Application of Taguchi method in the optimization of end milling parameters. Journal of materials processing technology. 2004;145:84-92.
    [38] Haykiri-Acma H, Yaman S, Kucukbayrak S. Effect of heating rate on the pyrolysis yields of rapeseed. Renewable Energy. 2006;31:803-10.
    [39] Pawlak-Kruczek H, Arora A, Mościcki K, Krochmalny K, Sharma S, Niedzwiecki L. A transition of a domestic boiler from coal to biomass–Emissions from combustion of raw and torrefied Palm Kernel shells (PKS). Fuel. 2020;263:116718.

    下載圖示 校內:2021-09-02公開
    校外:2021-09-02公開
    QR CODE