| 研究生: |
陳俊瑋 Chen, Jiun-Wei |
|---|---|
| 論文名稱: |
以密度泛函理論探討(3,3)奈米碳管對氫分子的吸附機制 Study on Molecular Hydrogen Adsorption Mechanism upon (3,3) Carbon Nanotube by Density Functional Theory |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 吸附 、奈米碳管 、密度泛函理論 、氫 |
| 外文關鍵詞: | hydrogen, density functional theory, carbon nanotube, adsorption |
| 相關次數: | 點閱:100 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫能已逐漸成為未來的重要能源,然而由於氫的密度很小,再加上安全的考量,故氫的儲存一直是個重要的課題。除了傳統的方法之外,儲氫合金與奈米碳材被視為是有潛力的氫能材料,其中尤以奈米碳管最受到矚目。
本論文將採用以密度泛函理論為基礎的第一原理計算軟體-VASP(Vienna Ab-initio Simulation Package),主要是採用以廣義梯度近似法(Generalized gradient approximation)發展而來的PW91勢能來描述交換相關能。內容主要是針對(3,3)型的奈米碳管,尋找其最佳吸附狀態,並分析其電荷轉移,探討儲氫機制。在物理吸附方面,分別比較不同型態的氫分子在接近(3,3)型與(4,2)型碳管時,其所對應的束縛能與吸附位置,並討論其中的差異,發現當碳管半徑約為2時,束縛能約為-0.07eV,與半徑為3.39的(5,0)碳管相比,顯示吸附位置與束縛能跟半徑有關;在化學吸附方面,亦先求出吸附位置,並利用碳原子與氫原子的電荷密度分佈,證實了化學吸附時的解離現象。
Hydrogen energy is believed to be one of the best substitutes for fossil fuels in the future. However, due to its small density and safety consideration, its storage has been an important issue. In addition to the traditional methods, hydrogen storage alloy and carbon nano-materials are regarded as a potential hydrogen-storage materials, especially carbon nanotubes.
The objective of this thesis is to study the hydrogen molecule adsorption upon the (3,3) carbon nanotube by the first principle calculation software, VASP, which is based on the density functional theory. The exchange-correlation energy is calculated using the generalized gradient approximation (GGA). Moreover, the PW91 parameterization is adopted. The most stable adsorption state and the charge transfer are investigated to understand the detailed mechanism of the process. For the physical adsorption, we compare the binding energy and adsorption position, when different types of hydrogen molecule are approaching the carbon nanotubes. For the chemical adsorption, we obtain the adsorption position first, and then confirm the dissociation by using the charge density distribution between the carbon atom and hydrogen atom. Finally, the phenomena and detailed mechanism of these adsorption are evaluated and discussed. It is found that when the radius of the tube is around 2, its binding energy of physisorption is about -0.07eV.
[1] 柯賢文, “未來的氫能經濟”, 科學發展, Vol. 399, pp.68-75, 2006.
[2] 成會明編著, 張勁燕校訂, “奈米碳管”, 五南圖書出版股份有限公司, 台北市, pp. 440, 2004.
[3] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, Vol. 386, pp. 377-379, 1997.
[4] Alan Chambers, Colin Park, R. Terry, K. Baker, and Nelly M. Rodriguez, “Hydrogen Storage in Graphite Nanofibers”, J. Phys. Chem. B, Vol. 102, No. 22, pp. 4253-4256, 1998.
[5] Y. Ye, C. C. Ahn, C. Witham, and B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith, and R. E. Smalley, “Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes”, Appl. Phys. Lett, Vol. 74, No. 16, pp. 2307-2309, 1999.
[6] P. Chen, X. Wu, J. Lin and K. L. Tan, “High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures”, Science, Vol. 285, pp. 91-93, 1999.
[7] Ralph T. Yang, “Hydrogen storage by alkali-doped carbon nanotubes–revisited”, Carbon, Vol. 38, No. 4, pp. 623-626, 2000.
[8] Wu X.B. , Chen P. , Lin J. , Tan K.L. , “Hydrogen uptake by carbon nanotubes”, International Journal of Hydrogen Energy, Vol. 25, No. 3, pp. 261-265, 2000.
[9] Q. Wang and J. K. Johnson, “Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores”, J. Chem. Phys, Vol. 110, No. 1, pp. 577-586, 1999.
[10] Q. Wang, J. K. Johnson, “Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption”, J. Phys. Chem, Vol. 103, No. 23, pp. 4809-4813, 1999.
[11] Q. Wang, J. K. Johnson, “Computer Simulations of Hydrogen Adsorption on Graphite Nanofibers”, J. Phys. Chem. B, Vol. 103, No. 2, pp. 277-281, 1999.
[12] M. Rzepka, P. Lamp and M. A. de la Casa-Lillo, “Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes”, J. Phys. Chem, Vol. 102, No. 52, pp. 10894-10898, 1998.
[13] F. Darkrim and D. Levesque, “Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes”, J. Chem. Phys, Vol. 109, No. 12, pp.4981-4984, 1998.
[14] P. A. Gordon and R. B. Saeger, “Molecular Modeling of Adsorptive Energy Storage: Hydrogen Storage in Single-Walled Carbon Nanotubes”, Ind. Eng. Chem. Res, Vol. 38, No. 12, pp. 4647-4655, 1999.
[15] K. A. Williams and P. C. Eklund, “Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes”, Chem. Phys. Lett, Vol. 320, No. 3-4, pp. 352-358, 2000.
[16] S. M. Lee and Y. H. Lee, “Hydrogen storage in single-walled carbon nanotubes”, Appl. Phys. Lett, Vol. 76, No. 20. pp. 2877-2879, 2000.
[17] S. M. Lee, K. S. Park, Y. C. Choi, Y. S. Park, J. M. Bok, D. J. Bae, K. S. Nahm, Y. G. Choi, S. C. Yu, N. G. Kim, T. Frauenheim and Y. H. Lee, “Hydrogen adsorption and storage in carbon nanotubes”, Synth. Met, Vol. 113, No. 3, pp. 209-216, 2000.
[18] Z. Mao, A. Garg and S. B. Sinnott, “Molecular dynamics simulations of the filling and decorating of carbon nanotubules”, Nanotechnology, Vol. 10, No. 3, pp. 273-277, 1999.
[19] V. Barone, J. Heyd, and G. E. Scuseria, “Interaction of atomic hydrogen with single-walled carbon nanotubes: A density functional theory study”, J. Chem. Phys, Vol. 120, No. 15, pp. 7169-7173, 2004.
[20] J. A. Alonso, J. S. Arellano, L. M. Molina, A. Rubio, and M. J. Lopez, “Interaction of Molecular and Atomic Hydrogen With Single-Wall Carbon Nanotubes”, IEEE Transactions on Nanotechnology, Vol. 3, No. 2, pp. 304-310, 2004.
[21] I. Cabria, M. J. Lopez, J. A. Alonso, “Density functional study of molecular hydrogen coverage on carbon nanotubes”, Comput. Mater. Sci, Vol. 35, No. 3, pp. 238-242, 2006.
[22] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol. 354, No. 6348, pp. 56-58, 1991.
[23] Th. Henning, F. Salama, “Carbon in the Universe”, Science, Vol. 282, No. 5397, pp. 2204-2210, 1998.
[24] H. Hiura, T. W. Ebbesen, J. Fujita, K. Tanigaki, and T. Takada, “Role of sp3 defect structures in graphite and carbon nanotubes”, Nature, Vol. 367, No. 6459, pp. 148-151, 1994.
[25] V. H. Crespi, “Relations between global and local topology in multiple nanotube junctions”, Phys. Rev. B, Vol. 58, No. 19, pp. 12671-12671, 1998.
[26] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, “Structure and Electronic Properties of Carbon Nanotubes”, J. Phys. Chem. B, Vol. 104, No. 13, pp. 2794-2809, 2000.
[27] 李宗隆, “單壁碳奈米管之結構Structure of single-walled carbon nanotubes”, 奈米通訊, Vol. 12, No. 3, pp. 60-71, 2005.
[28] A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, and Y. Nishina, “Evidence for Size-Dependent Discrete Dispersions in Single-Wall Nanotubes”, Phys. Rev. Lett, Vol. 78, No. 23, pp. 4434-4437, 1997.
[29] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon, Vol. 33, No. 7, pp. 883-891, 1995.
[30] 黃炳薰, “應變與溫度效應對矽(Si)與砷化鎵(GaAs)能帶結構的影響”, 國立成功大學機械工程研究所, 碩士論文, 2005.
[31] R. Eisberg, R. Resnick著, 單溥, 陳自強, 黃棟洲譯著, “量子物理學”, 復漢出版社, 台南, 1988.
[32] 趙成大編著, “固體量子化學-材料化學的理論基礎”, 2nd ed, 高等教育出版社, 北京, 2003.
[33] J. H. van Vleck, “Nonorthogonality and Ferromagnetism”, Phys. Rev, Vol. 49, No. 3, pp. 232-240, 1936.
[34] P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas”, Phys. Rev, Vol. 136, No. 3B, pp. B864-B871, 1964.
[35] W. Kohn, L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev, Vol. 140, No. 4A, pp. A1133-A1138, 1965.
[36] W. Kohn, “Nobel Lecture: Electronic structure of matter—wave functions and density functionals”, Rev. Mod. Phys, Vol. 71, No. 5 pp. 1253-1266, 1998.
[37] C. Kittel, ”Solid State Physics”, 8th ed, John Wiley&Sons, New York, 2006.
[38] M. C. Payne, M. P. Teter, D.C. Allan, T. A. Arias, and J. D. Joannopoulas, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients”, Rev. Mod. Phys, Vol. 64, No. 4, pp.1045-1097, 1992.
[39] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals”, Phys. Rev. B, Vol. 47, No. 1 , pp. 558-561, 1993.
[40] G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium”, Phys. Rev. B, Vol. 49, No. 20, pp. 14251-14269, 1994.
[41] G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Comput. Mater. Sci, Vol. 6, No. 1, pp. 15-50, 1996.
[42] G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Phys. Rev. B, Vol. 54, No. 16, pp. 11169-11186, 1990.
[43] P. E. Blochl, “Projector augmented-wave method”, Phys. Rev. B, Vol. 50, No. 24, pp. 17953-17979, 1994.
[44] G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method”, Phys. Rev. B, Vol. 59, No. 3, pp. 1758-1775, 1999.
[45] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”, Phys. Rev. B, Vol. 46, No. 11, pp. 6671-6687, 1992.
[46] D. R. Lide, “CRC Handbook of Chemistry and Physics”, Boca Raton, Florida, 1995.
[47] D. E. Tuyarot, B. Koiller, and R. B. Capaz, “Tight-binding total-energy method applied to polyacetylene”, Phys. Rev. B, Vol. 61, No. 11, pp. 7187-7191, 2000.
[48] S. Reich, C. Thomsen, and P. Ordejon, “Elastic properties of carbon nanotubes under hydrostatic pressure”, Phys. Rev. B, Vol. 65, No. 15, pp. 153407-1-153407-4, 2002.
[49] J. S. Arellano, L. M. Molina, A. Rubio, and J. A. Alonso, “Density functional study of adsorption of molecular hydrogen on graphene layers”, J. Chem. Phys, Vol. 112, No. 18, pp. 8114-8119, 2000.
[50] K. Tada, S. Furuya, K. Watanabe, “Ab initio study of hydrogen adsorption to single-walled carbon nanotubes”, Phys. Rev. B, Vol. 63, No. 15, pp. 155405-1-155405-4, 2001.