| 研究生: |
張仲維 Chang, Chung-Wei |
|---|---|
| 論文名稱: |
烏溪辮狀河段的魚類棲地時空變異與利用 Fish Habitat Utilization and Spatiotemporal Variability in the Braided River Section of the Wu River |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 巴氏銀鮈 、棲地特徵 、棲地變化 、伏流水區 、辮狀河川 |
| 外文關鍵詞: | Squalidus banarescui, Habitat Characteristics, Habitat Changes, Hyporheic Zone, Braided river |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
辮狀河川的棲息地易受洪水事件影響而改變或消失,每個水域提供的棲息地條件不同,影響了生物群落的組成,需要完善的監測與評估以保護受威脅的生物。本研究於臺中市烏溪辮狀分歧河段挑選六個水域進行調查,透過階層式集群分析、逐步區別分析與主成份分析等方法,探討棲地時空變異與巴氏銀鮈的利用情況。
研究發現此六處水域的棲地類型主要可區分為寬廣潭型、淺潭型、冷水潭型和淺流型環境,並確認了因洪水、季節更替、水域隨時間發展而產生的改變模式。同時,巴氏銀鮈最常利用上湧的淺潭,其擁有緩慢流速(0.03 m/s)、適度的植被覆蓋與細顆粒的底質。未受洪水衝擊時,該類環境的地表水質與導電度、TDS呈現正相關,pH值和溶氧相較下滲的水域穩定。而下滲的水域地表水質易受季節變化及其他環境因素影響。評估巴氏銀鮈潛在的棲地時,除考量地表水質與流速外,伏流水上湧下滲、洪水干擾的頻率、洪水時棲地增加的流量、水域在洪水衝擊後的恢復速度皆為重要的因素。本研究建議針對巴氏銀鮈賴以生存的關鍵水域進行長期觀察,評估動物與人為活動是否對棲地環境構成威脅,以利保育工作的長期推進。
Habitats in braided rivers are susceptible to changes or disappearance due to flood events, with each waterbody offering different habitat conditions that influence the composition of biological communities. Comprehensive monitoring and evaluation are necessary to protect threatened species. This study selected six waterbodies in the braided section of the Wu River in Taichung City for investigation. Through hierarchical cluster analysis, stepwise discriminant analysis, and principal component analysis, we explored the spatiotemporal variability of habitats and the habitat utilization of Squalidus banarescui. The study found that the habitats in these six waterbodies could be categorized into four types: wide pools, shallow pools, cold-water pools, and shallow runs. The study also identified change patterns caused by flood pulses, seasonal changes, and long-term development of the waterbodies. Results indicated that Squalidus banarescui most frequently utilized upwelling shallow pools, characterized by slow flow velocity, moderate vegetation cover, and fine-grained substrates. In the absence of flood impacts, the surface water quality in these habitats showed a positive correlation with electrical conductivity and TDS, and their pH and dissolved oxygen levels were more stable compared to infiltrating pools. Surface water quality in infiltrating waterbodies was more susceptible to seasonal variations and other environmental factors. When assessing potential habitats for Squalidus banarescui, factors such as surface water quality, flow velocity, hyporheic upwelling and infiltration, water surface covered by vegetation, frequency of flood disturbances, increased flow during the flood, and the recovery speed of the waterbody after flood impacts were all crucial considerations. Long-term monitoring of key waterbodies critical to the survival of Squalidus banarescui was recommended to assess potential threats from animal and human activities, thereby supporting effective conservation efforts.
Amaral, J. H. F., Melack, J. M., Barbosa, P. M., Borges, A. V., Kasper, D., Cortés, A. C., Zhou, W., MacIntyre, S., & Forsberg, B. R., Inundation, hydrodynamics and vegetation influence carbon dioxide concentrations in Amazon floodplain lakes. Ecosystems, 25(4), 911-930. (2022).
Amoros, C., The Concept of habitat diversity between and within ecosystems applied to river side-arm restoration. Environmental Management, 28(6), 805–817. (2001).
Amoros, C., & Bornette, G., Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology, 47(4), 761-776. (2002).
Anderson, M. P., & Woessner, W. W., The role of the postaudit in model validation. Advances in Water Resources, 15(3), 167-173. (1992).
Arscott, D. B., Tockner, K., van der Nat, D., & Ward, J. V. Aquatic habitat dynamics along a braided alpine river ecosystem (Tagliamento River, Northeast Italy). Ecosystems, 5(8), 0802-0814. (2002).
Bakalowicz, M. Water Geochemistry: Water Qualitlr and Dynamics. (1994).
Baxter, C. V., & Hauer, F. R., Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and Aquatic Sciences, 57(7), 1470-1481. (2000).
Baxter, C., Hauer, F. R., & Woessner, W. W., Measuring groundwater–stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity. Transactions of the American Fisheries Society, 132(3), 493-502. (2003).
Becker, A., Cowley, P. D., & Whitfield, A. K., Use of remote underwater video to record littoral habitat use by fish within a temporarily closed South African estuary. Journal of Experimental Marine Biology and Ecology, 391(1-2), 161-168. (2010).
Bolland, J. D., Nunn, A. D., Lucas, M. C., & Cowx, I. G., The importance of variable lateral connectivity between artificial floodplain waterbodies and river channels. River Research and Applications, 28(8), 1189-1199. (2012).
Bornette, G., Amoros, C., & Lamouroux, N., Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshwater Biology, 39(2), 267-283. (1998).
Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, H. M., The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29(1), 59-81. (1998).
Boulton, A. J., Marmonier, P., & Davis, J. A., Hydrological exchange and subsurface water chemistry in streams varying in salinity in south-western Australia. International Journal of Salt Lake Research, 8, 361-382. (1999).
Bovee, K. D., & Milhous, R. T., Hydraulic simulation in instream flow studies: theory and techniques (No. 5). Department of the Interior, Fish and Wildlife Service, Office of Biological Services, Western Energy and Land Use Team, Cooperative Instream Flow Service Group. (1978).
Bovee, K. D., Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology (Vol. 86). National Ecology Center, Division of Wildlife and Contaminant Research, Fish and Wildlife Service, US Department of the Interior. (1986).
Brooks, E. J., Sloman, K. A., Sims, D. W., & Danylchuk, A. J., Validating the use of baited remote underwater video surveys for assessing the diversity, distribution and abundance of sharks in the Bahamas. Endangered Species Research, 13(3), 231-243. (2011).
Brown, L. R., Fish communities and their associations with environmental variables, lower San Joaquin River drainage, California. Environmental Biology of fishes, 57(3), 251-269. (2000).
Brunke, M., & Gonser, T. O. M., The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology, 37(1), 1-33. (1997).
Cappo, M., Harvey, E., Malcolm, H., & Speare, P., Potential of video techniques to monitor diversity, abundance and size of fish in studies of marine protected areas. Aquatic Protected Areas-What Works Best and How Do We Know, 1, 455-64. (2003).
Chen, I. S., Jang-Liaw, N. H., Chang, Y. C., Zhang, V. W., & Shao, K. T., Threatened fishes of the world: Squalidus banarescui Chen and Chang, 2007 (Cyprinidae). Environmental Biology of Fishes, 88, 63-64. (2010).
Chen, I. S., & Chang, Y. C., Taxonomic revision and mitochondrial sequence evolution of the cyprinid genus Squalidus (Teleostei: Cyprinidae) in Taiwan with description of a new species. Raffles Bull Zool Suppl, 14, 69-76. (2007).
Crocker, M. T., & Meyer, J. L., Interstitial dissolved organic carbon in sediments of a southern Appalachian headwater stream. Journal of the North American Benthological Society, 6(3), 159-167. (1987).
Datry, T., Lamouroux, N., Thivin, G., Descloux, S., & Baudoin, J. M., Estimation of sediment hydraulic conductivity in river reaches and its potential use to evaluate streambed clogging. River Research and Applications, 31(7), 880-891. (2015).
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J ., Prieur-Richard, A.-H ., Soto,D ., Stiassny, M. L. J. & Sullivan, C. A., Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163-182. (2006).
Findlay, S., Meyer, J. L., & Risley, R., Benthic bacterial biomass and production in two blackwater rivers. Canadian Journal of Fisheries and Aquatic Sciences, 43(6), 1271-1276. (1986).
Fisher, R. A., The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179-188. (1936).
Fowler, R. T., & Scarsbrook, M. R., Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel‐bed rivers. New Zealand Journal of Marine and Freshwater Research, 36(3), 471-482. (2002).
Franken, R. J., Storey, R. G., & Dudley Williams, D., Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia, 444, 183-195. (2001).
Frissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D., A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management, 10, 199-214. (1986).
Glińska-Lewczuk, K., Burandt, P., Kujawa, R., Kobus, S., Obolewski, K., Dunalska, J., Grabowska, M ., Lew, S & Chormański, J., Environmental factors structuring fish communities in floodplain lakes of the undisturbed system of the Biebrza River. Water, 8(4), 146. (2016).
Grimmel, H. M., Bullock, R. W., Dedman, S. L., Guttridge, T. L., & Bond, M. E. Assessment of faunal communities and habitat use within a shallow water system using non-invasive BRUVs methodology. Aquaculture and Fisheries, 5(5), 224-233. (2020).
Hajigholizadeh, M., & Melesse, A. M., Assortment and spatiotemporal analysis of surface water quality using cluster and discriminant analyses. Catena, 151, 247-258. (2017).
Harvey, J. W., Hydrologic exchange flows and their ecological consequences in river corridors. In Stream Ecosystems in a Changing Environment (pp. 1-83). Academic Press. (2016).
Hayashi, M., & Rosenberry, D. O., Effects of ground water exchange on the hydrology and ecology of surface water. Groundwater, 40(3), 309-316. (2002).
Hendricks, S. P., Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. Journal of the North American Benthological Society, 12(1), 70-78. (1993).
Hudson, P. F., Heitmuller, F. T., & Leitch, M. B., Hydrologic connectivity of oxbow lakes along the lower Guadalupe River, Texas: The influence of geomorphic and climatic controls on the “flood pulse concept”. Journal of Hydrology, 414, 174-183. (2012).
Hudson, P. F., & Mossa, J., Suspended sediment transport effectiveness of three large impounded rivers, US Gulf Coastal Plain. Environmental Geology, 32, 263-273. (1997).
Hupp, C. R., & Osterkamp, W. R., Riparian vegetation and fluvial geomorphic processes. Geomorphology, 14(4), 277-295. (1996).
Ivlev, V. S. Experimental ecology of the feeding of fishes. Yale University Press. (1961).
Junk, W. J., Bayley, P. B., & Sparks, R. E. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106(1), 110-127. (1989).
Kakore, B. G., Mamun, M., Lee, S. J., & An, K. G., Land-Use Pattern as a Key Factor Determining the Water Quality, Fish Guilds, and Ecological Health in Lotic Ecosystems of the Asian Monsoon Region. Water, 14(17), 2765. (2022).
Kann, J., & Welch, E. B., Wind control on water quality in shallow, hypereutrophic Upper Klamath Lake, Oregon. Lake and Reservoir Management, 21(2), 149-158. (2005).
Kawanishi, R., Dohi, R., Fujii, A., Inoue, M., & Miyake, Y., Vertical migration in streams: seasonal use of the hyporheic zone by the spinous loach Cobitis shikokuensis. Ichthyological Research, 64, 433-443. (2017).
Kawanishi, R., Inoue, M., Dohi, R., Fujii, A., & Miyake, Y., The role of the hyporheic zone for a benthic fish in an intermittent river: a refuge, not a graveyard. Aquatic Sciences, 75, 425-431. (2013).
Lechowicz, M. J., The sampling characteristics of electivity indices. Oecologia, 52, 22-30. (1982).
Lee, P. G., & Ng, P. K., The systematics and ecology of snakeheads (Pisces: Channidae) in Peninsular Malaysia and Singapore. Ecology and Conservation of Southeast Asian Marine and Freshwater Environments Including Wetlands, 59-74. (1994).
Malcolm, I. A., Soulsby, C., Youngson, A. F., & Petry, J., Heterogeneity in ground water–surface water interactions in the hyporheic zone of a salmonid spawning stream. Hydrological Processes, 17(3), 601-617. (2003).
Martínez-Santos, M., Ruíz-Romera, E., Martínez-López, M., & Antigüedad, I., Influence of upwelling on the shallow water chemistry in a small wetland riparian zone (Basque Country). Applied Geochemistry, 27(4), 854-865. (2012).
Massart, D., & Kaufman, L., The interpretation of analytical chemical data by the use of cluster analysis. (1983).
Mathers, K. L., Hill, M. J., & Wood, P. J., Benthic and hyporheic macroinvertebrate distribution within the heads and tails of riffles during baseflow conditions. Hydrobiologia, 794, 17-30. (2017).
Morán‐López, R., Da Silva, E., Pérez‐Bote, J. L., & Corbacho Amado, C., Associations between fish assemblages and environmental factors for Mediterranean‐type rivers during summer. Journal of Fish Biology, 69(5), 1552-1569. (2006).
Perkin, J. S., Gido, K. B., Cooper, A. R., Turner, T. F., Osborne, M. J., Johnson, E. R., & Mayes, K. B. Fragmentation and dewatering transform Great Plains stream fish communities. Ecological Monographs, 85(1), 73-92. (2015).
Platts, W. S., Megahan, W. F., & Minshall, G. W. Methods for Evaluating Stream, Riparian, and Biotic Conditions (Vol. 138): US Department of Agriculture, Forest Service, Intermountain Forest and Range ….(1982).
Rashid, Z. A., Amal, M. N. A., & Shohaimi, S., Water quality influences on fish occurrences in Sungai Pahang, Maran District, Pahang, Malaysia. Sains Malaysiana, 47(9), 1941-1951. (2018).
Sabater, S., Butturini, A., Muñoz, I., Romaní, A., Wray, J., & Sabater, F., Effects of removal of riparian vegetation on algae and heterotrophs in a Mediterranean stream. Journal of Aquatic Ecosystem Stress and Recovery, 6, 129-140. (1997).
Sharma, S. Applied Multivariate Techniques. John Wiley and Sons Inc., New York, 512 p. (1996)
Shuai, F. M., Li, X. H., Chen, F. C., Li, Y., & Lek, S., Spatial patterns of fish assemblages in the Pearl River, China: Environmental correlates. Fund. Appl. Limnol, 189, 329-340. (2017).
Smith, V. H., Tilman, G. D., & Nekola, J. C., Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100(1-3), 179-196. (1999).
Statzner, B., Gore, J. A., & Resh, V. H., Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society, 7(4), 307-360. (1988).
Sutela, T., Vehanen, T., & Jounela, P., Response of fish assemblages to water quality in boreal rivers. Hydrobiologia, 641, 1-10. (2010).
Talling, J. F., Environmental controls on the functioning of shallow tropical lakes. Hydrobiologia, 458, 1-8. (2001).
Tockner, K., Malard, F., & Ward, J. V., An extension of the flood pulse concept. Hydrological Processes, 14(16‐17), 2861-2883. (2000).
Toner, M., & Keddy, P., River hydrology and riparian wetlands: a predictive model for ecological assembly. Ecological Applications, 7(1), 236-246. (1997).
Valett, H. M., Hakenkamp, C. C., & Boulton, A. J., Perspectives on the hyporheic zone: integrating hydrology and biology. Introduction. Journal of the North American Benthological Society, 12(1), 40-43. (1993).
Valett, H. M., Dahm, C. N., Campana, M. E., Morrice, J. A., Baker, M. A., & Fellows, C. S., Hydrologic influences on groundwater-surface water ecotones: heterogeneity in nutrient composition and retention. Journal of the North American Benthological Society, 16(1), 239-247. (1997).
Valett, H. M., Fisher, S. G., & Stanley, E. H., Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream. Journal of the North American Benthological Society, 9(3), 201-215. (1990).
Van Der Nat, D., Tockner, K., Edwards, P. J., Ward, J. V., & Gurnell, A. M., Habitat change in braided flood plains (Tagliamento, NE‐Italy). Freshwater Biology, 48(10), 1799-1812. (2003).
Varlı, D., Characterization of groundwater and surface water interaction in kirmir stream using thermal remote sensing and in-stream measurements (Master's thesis, Middle East Technical University). (2016).
Ward, J. V., Bretschko, G., Brunke, M., Danielopol, D., Gibert, J., Gonser, T., & Hildrew, A. G., The boundaries of river systems: the metazoan perspective. Freshwater Biology, 40(3), 531-569. (1998).
White, D. S., Biological relationships to convective flow patterns within stream beds. Hydrobiologia, 196, 149-158. (1990).
White, D. S., Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society, 12(1), 61-69. (1993).
White, D. S., Elzinga, C. H., & Hendricks, S. P., Temperature patterns within the hyporheic zone of a northern Michigan river. Journal of the North American Benthological Society, 6(2), 85-91. (1987).
Willett, J. 1., Similarity and Clustering in Chemical Information Systems. John Wiley & Sons, Inc.. (1987).
Winkelmann, C., Koop, J. H., & Benndorf, J., Abiotic features and macroinvertebrate colonization of the hyporheic zones of two tributaries of the river Elbe (Germany). Limnologica, 33(2), 112-121. (2003).
Wyatt, K. H., Hauer, F. R., & Pessoney, G. F., Benthic algal response to hyporheic-surface water exchange in an alluvial river. Hydrobiologia, 607, 151-161.(2008).
天氣即時預報Wealert,天氣即時預報 網路電子版。取自https://wmega.tw/post/2023/08/,(2024)。
呂映昇,物理環境因子與魚類棲地喜好度之關係-多變量分析之應用。國立成功 大學水利及海洋工程學系碩士論文,取自https://hdl.handle.net/11296/7mbb26,(2009)。
李冠中,南臺灣外來種線鱧Channa striata生殖週期與食物組成之探討。國立高雄師範大學生物科技系碩士論文,取自https://hdl.handle.net/11296/5ja92a,(2012)。
李家徹,支流淡水魚類群聚與地形棲地之關係。國立臺南大學生態科學與技術學系環境生態碩士班碩士論文,取自 https://hdl.handle.net/11296/xd22xt,(2017)。
汪靜明,大甲溪水資源環境教育。經濟部水資源局,(2000)。
林信輝、黃朝慶、陳建男、林鑑澄、江政人,水生植物手冊。行政院農業委員會水土保持局,(2007)。
邱映軒,魚類群聚與環境關聯性及伏流水與地表逕流交換分析。國立成功大學水利及海洋工程學系碩士論文,取自 https://hdl.handle.net/11296/6njkfh,(2021)。
邵廣昭,台灣入侵種資料庫 網路電子版。取自https://gisd.biodiv.tw/tw/,(2024)。
邵廣昭,臺灣魚類資料庫 網路電子版。取自http://fishdb.sinica.edu.tw,(2024)。
阿利伯克有限公司,烏溪水系水域關注物種之生態措施及棲地調查。經濟部水利署第三河川分署,(2023)。
孫建平,巴氏銀鮈分布與棲地水文特性調查。行政院農業委員會林務局、國立成功大學,(2022)。
高瑞卿,周銘泰,張瑞宗,廖竣,台灣淡水及河口魚蝦圖鑑 (Vol. 18):晨星出版。(2020)。
張光宇,竹北蓮花寺濕地食蟲植物生育地之昆蟲資源。國立中興大學生命科學院碩士在職專班碩士論文,取自https://hdl.handle.net/11296/j46998,(2015)。
陳品任,魚類群落水生植物棲地使用及地表逕流與伏流水交換的水質空間變異。國立成功大學水利及海洋工程學系碩士論文,取自https://hdl.handle.net/11296/8rmf2j,(2022)。
陳泰然、王重傑 & 楊進賢,台灣梅雨季對流降水之時空分佈特徵。大氣科學,30(1),83-96,(2002)。
陳泰然、黃文亭、王尹懋,梅雨季中尺度對流系統與台灣北部地區降雨相關性之研究。大氣科學,29(1),21-36,(2001)。
游志弘,地表逕流與伏流水交換對水質特性相關性之探討。國立成功大學水利及海洋工程學系碩士論文,取自https://hdl.handle.net/11296/jgn67t,(2014)。
黃秉弘,烏溪高灘地水域棲地特性與魚類群落之關係。國立成功大學水利及海洋工程學系碩士論文,取自https://hdl.handle.net/11296/6rkuaf,(2023)。
楊正雄、林文隆,2023年巴氏銀鮈保育行動計畫。行政院農業委員會林務局、行政院農業委員會特有生物研究保育中心,(2023)。
楊正雄、曾子榮、林瑞興、曾晴賢、廖德裕,2017臺灣淡水魚類紅皮書名錄。行政院農業委員會特有生物研究保育中心,(2017)。
經濟部水利署,水利工程技術規範-河川治理篇(上冊),(2013)。
經濟部水利署第三河川局,烏溪水系風險評估總成果報告書,(2020)。
經濟部水利署規劃試驗所,烏溪下游段低水治理規劃,(1997)。
葉秋妤,台灣沿海溼地草澤之植群生態研究。國立中山大學生物科學系研究所碩士論文,取自https://hdl.handle.net/11296/h9kges,(2005)。
鉅樺工程顧問有限公司,鳥嘴潭人工湖計畫生態保育措施專案管理111年度執行報告。經濟部水利署中區水資源分署,(2022)。
臺中市野生動物保育學會,110年度烏溪水系巴氏銀鮈分布監測計畫期末報告。 行政院農業委員會林務局,(2022)。
趙傳睿,以微棲地偏好度及適合度結合River2D 模擬枯水期魚類棲地。國立成功大學水利及海洋工程學系碩士論文,取自 https://hdl.handle.net/11296/49zqdw,(2011)。
校內:2026-07-31公開