簡易檢索 / 詳目顯示

研究生: 洪辰宗
Hung, Chen-Tsung
論文名稱: 以不等粒徑次微米Y2O3、α-Al2O3粉末合成釔鋁石榴石之研究
The Study on Yttrium Aluminum Garnet (Y3Al5O12) Synthesis Using Submicrometric Y2O3 And α-Al2O3 Powders Differ in Size
指導教授: 顏富士
Yen, Fu-Su
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 106
中文關鍵詞: 釔鋁石榴石 (yttrium aluminum garnet)固態反應粒徑比
外文關鍵詞: yttrium aluminum garnet, solid-state reaction, particle size ratio
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業上採用的成本低、製程簡易、可量產的固態反應製程合成純相YAG粉體,係以氧化鋁與氧化釔或含鋁、釔之鹽類混合,經高溫煅燒後而得。獲得YAG純相所需溫度常取決於反應原料粉末粒徑大小及混合均勻度。使用微米級之氧化物為原料,也需>1600oC,也需配合多次再研磨混合與煅燒處理才可獲得純相,屬一高耗能製程。
    一般細化原料粉末、提高成分混合均勻度為改良此製程的常見手段。但對YAG而言,本文提出另一觀點,使用粗細不同之二原料粉末經均勻混合,仍有可能達成與細粒原料混合之同等效果。
    以Y2O3+Al2O3反應生成YAG的研究說明YAG係藉由Al成分往Y2O3粒體方向擴散而得,因此觀察到YAM→YAP→YAG之反應過程。本研究提出即便使用粗粒原料粉末,若採用適當之Y2O3/Al2O3粒徑比,使Y2O3、Al2O3二成分粒體在合成反應中計量接觸,獲得充足之Al來源,也可不需細化原料而簡易地獲得純相YAG粉末。再者,利用Al成分擴散進入Y2O3粒體合成YAG之特性,藉由Y2O3粒體為母體,作為合成預定粒徑YAG粉末的材料設計概念也屬可行。
    本研究於第四章藉由粒體的空間排列關係,分析在符合YAG計量條件下,二不同粒徑成分顆粒間可有效接觸,及固態反應過程粒徑比與反應速率間的關係。當Y2O3/ Al2O3粒徑比在0.25-4範圍,二成分顆粒可有效接觸,且都符合YAG計量所需。但不同範圍之Y2O3/ Al2O3粒徑比對合成YAG之難易 (速率) 卻有不同。實驗固定Al2O3粒徑為400 nm,縮減Y2O3粒徑使Y2O3/ Al2O3粒徑比由0.5降至0.125,雖然反應擴散距離變短,但供應單顆Y2O3粒體之Al成分量 (也即與Al2O3之配位) 減少,初期YAG合成速率反下降。再者,超出合理範圍之0.125起始粉,明顯因部分Y2O3顆粒無法與Al2O3接觸,未達YAG計量所需,其合成YAG反應也顯著劣化。說明原料粉末變細,卻未能使二成分粉末達計量接觸,反不利YAG之合成。當固定Y2O3粒徑為200 nm,縮減Al2O3粒徑使Y2O3/ Al2O3粒徑比由0.5增至1,反應擴散距離固定,但供應單顆Y2O3粒體之Al成分量增加,可加速初期YAG合成速率。當固定Al2O3粒徑為200 nm,增加Y2O3粒徑使Y2O3/ Al2O3粒徑比由0.5增至2,即便擴散距離增加,但供應單顆Y2O3粒體之Al成分量也增加,使YAG生成速率與使用細粒Y2O3粉末者相當。綜合以上所述,比較合成單位體積YAG下 (400 nm Y2O3 + 400 nm Al2O3),Y2O3/ Al2O3粒徑比由0.25增加至4時,供應單顆Y2O3粒體之Al成分越充足,因此即便使用粗粒Y2O3粉末,只要搭配細粒之Al2O3粉末,也可快速合成YAG。
    第五章說明在固態反應過程Y2O3/ Al2O3粒徑比與反應動力學的關係,特別是一般所稱主要兩種YAG生成機制之發生特性。再由之推斷合成高純度(單一相)YAG之有效Y2O3粒徑。.進一步解析固定Al2O3粒徑為200 nm,增加Y2O3粒徑使Y2O3/ Al2O3粒徑比由0.5增至2,比較在使用細、粗Y2O3粉末下,何以YAG生成速率相近,並探討其反應特性。由YAG二階段之生成趨勢,說明其生成機制應有二種依序發生:一為界面反應機制 (interface-controlled mechanism),二為擴散反應機制 (diffusion-controlled mechanism)。當提供足夠之能量 (溫度),可使藉由界面反應生成之YAG比例隨溫度呈線性增加,由1350oC的50%增加至1500oC的90%。細粒Y2O3有機會完全藉由界面反應機制合成YAG,而粗粒Y2O3則需再經擴散機制完成反應。藉由動力學之計算,顯示在固定Al2O3粒徑下,Y2O3粒徑變粗,但與Al2O3之配位越多,YAG之生成活化能可由604 kJ/mol降至493 kJ/mol (1350-1500oC)。可以預測的是,此一系統若使用< 200 nm之Al2O3粉末 (增加Y2O3與Al2O3之配位),應可進一步加速YAG之生成且降低其活化能。
    第六章利用第六章推斷之合成高純度 (單一相) YAG之有效Y2O3粒徑,證實因Al成分往Y2O3粒體方向擴散,以Y2O3粒體作為母體,可控制合成之YAG粒徑。證實YAG粉末之粒徑 (< 500 nm) 可藉由Y2O3粉末之粒徑獲得控制。將不同Y2O3/ Al2O3粒徑比之起始粉,藉由1450-1500oC高溫持溫5分鐘,提高界面反應合成之YAG比例,使細、粗Y2O3粉末可快速合成純相 (> 90 wt%) YAG粉末,再統計合成之YAG粒徑與Y2O3粒徑之關係。顯示Y2O3/ Al2O3粒徑比≧1 (Al2O3包覆Y2O3) 之起始粉,在YAG生成過程中,未反應之Al2O3粒體限制釔鋁結晶相在反應過程中可能發生的凝聚、成長,最終獲得為Y2O3粒徑1.24倍之YAG粒體。證實利用Al成分擴散進入Y2O3粒體生成YAG的特性,可作為調控YAG粒徑的方法。以穿透式電子顯微鏡分析Y2O3粒體 (母體) 相轉換過程之微結構,顯示當有二結晶相 (Y2O3/YAM, YAP/YAG) 共存於一粒體內時並未發生破裂,而可維持原Y2O3粒體尺寸。反之,當Y2O3/ Al2O3粒徑比≦1 (Y2O3包覆Al2O3),在YAG生成過程中Al成分向外擴散進入Y2O3粒體,生成之釔鋁結晶相粒體間容易發生凝聚、成長,最終造成YAG粒體粒徑的不均勻。
    第七章藉由YAG此一多成分系統之合成為例,說明本研究成果可提供之相關工程應用。包括已知擴散特性 (Al→Y2O3粒體;Ba→TiO2粒體;Ba→ZrO2粒體) 之多成分氧化物系統,不需將原料細化以降低合成溫度,僅需設計適當之原料粒徑比,並提供足夠之能量 (溫度),增加藉由界面反應合成產物之比例,即可簡易獲得純相粉末。並可藉由母體粒徑控制合成之產物粉末粒徑,不需高溫熟化、研磨分散後處理,係屬一設計粉末規格概念之實例。

    In industry, YAG powders are synthesized by solid-state reaction benefitted with low cost, simplicity, and large-scale production. The process is conducted by mixing alumina (Al2O3) and yttria (Y2O3) (or salts supply Al and Y), and then calcined mixtures to obtain YAG powders. The temperature for a phase-pure YAG is decided by particle sizes of raw materials and homogeneity of mixtures. In general, temperatures above 1600oC are acquired while using raw materials of micrometer, and repeated grinding and calcination are inevitable. Therefore, finer raw materials are usually adopted to solve this problem. However, this study proposed a new viewpoint for YAG synthesis that YAG could be obtained as easily by using submicrometric Y2O3 and α-Al2O3 powders differ in size as using fine ones.
    In previous studies, it is demonstrated that YAG is achieved by prompting Al into the structure of Y2O3 to form YAM, YAP, and YAG in turn when using Y2O3 and Al2O3 as raw materials. Accordingly, this study revealed that YAG could be synthesized easily while adopting an appropriate Y2O3/Al2O3 size ratio which Y2O3 was contact with Al2O3 and satisfied YAG stoichiometry, even coarser powders were used. Furthermore, it is practicable that the directional diffusion of Al during YAG formation was utilized to synthesize YAG with desired sizes by using Y2O3 as host materials.
    The spacial relation between two oxides and how the Y2O3/Al2O3 size ratio affected formation rates of YAG were elucidated in chapter 4. It showed that two oxides were completely in contact with each other and satisfied YAG stoichiometry when Y2O3/Al2O3 size ratios were in the range of 0.25-4. But, the rates of YAG formation were varied with different Y2O3/Al2O3 size ratios. When Al2O3 of 400 nm was used, decreasing Y2O3/Al2O3 size ratio from 0.5 to 0.125 resulted in shorter diffusion length for Al, but less supply of Al for a single Y2O3 particle. Therefore, a decreasing initial YAG formation rate was observed. Moreover, the two oxides were in contact with each other partly when Y2O3/Al2O3 size ratio of 0.125 was adopted, and postponed the YAG formation rate as well. When Y2O3 of 200 nm was used (same diffusion length for Al), increasing Y2O3/Al2O3 size ratio from 0.5 to 2 resulted in more supply of Al for a single Y2O3 particle. Extraordinarily, a comparable initial YAG formation rate was observed no matter which particle size of Y2O3 was adopted. Hence, even a coarse Y2O3 was used, as long as a finer Al2O3 powder was co-operated, YAG could be obtained easily as well.
    The relation between the Y2O3/Al2O3 size ratio and kinetics of YAG formation was elaborated in chapter 5. Two YAG formation mechanisms were explored and the Y2O3 particle size limit which could be achieved YAG stoichiometry at some calcined temperature also be predicted. No matter which particle size of Y2O3 was adopted, YAG formed rapidly when starting powders just subjected heat treatments, and then slow down with a prolonged duration. YAG formation could be characterized two stages induced in turn from interface- controlled mechanism and diffusion-controlled mechanism. A linear-increased proportion (50% to 90%) of YAG formed via interface-controlled mechanism when a higher temperature was provided (1350oC to 1500oC). It showed that a fine Y2O3 particle could be achieved YAG via interface-controlled mechanism only, but diffusion-controlled mechanism was followed when a coarse Y2O3 particle was used. When Al2O3 of 200 nm was used, activation energy for YAG formation decreased from 604 kJ/mol to 493 kJ/mol when Y2O3 particles increased from 100 nm to 400 nm.
    Utilizing Y2O3 as host materials to obtained YAG powders with desired sizes were demonstrated in chapter 6. The practicability was based on the directional diffusion of Al during YAG formation. YAG powders (> 90 wt%) could be obtained via interface-controlled mechanism when starting powders subjected a heat treatment of 1450-1500oC/ 5 min. It revealed that particle sizes of YAG were 1.24 times of that of Y2O3 by Feret diameter statistics.
    Possible evolutions and related engineering applications for other multi-element systems induced from this study were discussed in chapter 7. This study proposed that well-known diffusion characterizations for multi-element systems (e.g. Al→Y2O3, Ba→ TiO2, Ba→ZrO2) should be utilized to obtained an appropriate size ratio of raw materials, and then provided a high temperature to completed the reaction via interface-controlled mechanism. It is practicable that a phase-pure powder with a desired particle size could be easily obtained.

    摘要 I Abstract IV 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 合成YAG之製程 1 1.2固態反應合成YAG粉末及其優缺點 1 1.3預定粒徑YAG粉末之獲得 2 1.4 研究動機 3 1.5研究目的 4 第二章 理論基礎與前人研究 5 2.1釔鋁結晶相之結構與熱力學 5 2.2.1 YAG之結構 5 2.1.2 YAM與YAP中間相 5 2.1.3 Al2O3-Y2O3之相圖 5 2.2 YAG之合成法 8 2.2.1 濕式化學法 8 2.2.2 固態反應法 9 2.3 與YAG生成相關之動力學條件 11 2.3.1 升溫速率的影響 11 2.3.2原料粒徑對固態反應的影響 15 2.3.3 原料粒徑與反應機制的關係 16 2.3.4 操作溫度與生成量對反應機制的關係 16 2.3.5 Arrhenius方程式 (Arrhenius rate equation) 16 2.3.6相轉換反應速率式 17 2.4 理論分析-原料粒徑控制產物粒徑的相關研究 17 2.4.1控制多成分系統合成粒徑之相關研究 17 2.4.2 以Y2O3粒徑控制合成YAG粒徑之可行性 18 第三章 實驗方法與步驟 21 3.1實驗原料 21 3.2實驗步驟 21 3.3熱處理 21 3.4性質檢測 31 3.4.1 雷射粒徑分佈儀 31 3.4.2 熱差分析 31 3.4.3 粉末結晶相分析 32 3.4.4 顯微結構分析 32 3.4.5 Feret diameter統計 33 第四章 釔、鋁氧化物粒徑比對合成YAG之影響 39 4.1理論分析 35 4.1.1球型粒體混合模型 35 4.1.2 Y2O3/ Al2O3粒徑比對起始粉末狀態之影響 35 4.1.3有效之Y2O3/ Al2O3 粒徑比 39 4.2 實驗設計 43 4.3 Y2O3/ Al2O3粒徑比與二成分粒體之空間排列關係 43 4.4 熱差分析 47 4.5 Y.5A4、Y1A4、Y2A4系統於高溫下之結晶相變化 49 4.6 Y2A2、Y2A3、Y2A4系統於高溫下之結晶相變化 52 4.7 Y1A2、Y2A2、Y3A2、Y4A2系統於高溫下之結晶相變化 54 4.8 結論 57 第五章 YAG合成過程特性與動力學觀察 58 5.1 實驗設計 58 5.2 YAG生成趨勢解析 58 5.3 二種YAG生成機制 67 5.4 YAG生成動力學分析 71 5.5 結論 74 第六章 YAG合成粒徑之可調控性 75 6.1 實驗設計 75 6.2 粉體粒徑分析 75 6.3 微結構分析 81 6.4 Y2O3/ Al2O3粒徑比對合成YAG粒體外型之關係 81 6.5 結論 87 第七章 相關工程應用 88 7.1粒徑比與不等粒徑原料粉末合成多成分系統 88 7.2 YAG系統之相關應用與限制 88 7.3 其他多成分系統之應用 89 第八章 總結論 91 參考文獻 93 附錄 99 自述 103

    [1] G. de With, “Preparation, microstructure and properties of Y3Al5O12 ceramics,” Philips J. Res., 42 (1987) 119-130.
    [2] K. Ohno and T. Abe, “Bright green phosphor, Y3Al5-XGaXO12: Tb, for projection CRT,” J. Electrom. Soc., 134 [8] (1987) 2072-2076.
    [3] G. Gowda, “Synthesis of yttrium aluminates by the sol-gel process,” J. Mater. Sci. Lett., 5 (1986) 1029-1032.
    [4] O. Yamaguchi, K. Hirota, H. Takano, and A. Hayashida, “Formation of alkoxy-derived yttrium aluminium oxides,” J. Mater. Sci., 27 (1992) 1261-1264.
    [5] K.M. Kinsman and J. McKittrick, “Phase development and luminescence in chromium-doped yttrium aluminium garnet (YAG:Cr) phosphors,” J. Am. Ceram. Soc., 77 [11] (1994) 2866-2872.
    [6] J. Su, Q.L. Zhang, C.J. Gu, D.L. Sun, Z.B. Wang, H.L. Qiu, A.H. Wang, and S.T. Yin, “Preparation and characterization of Y3Al5O12 (YAG) nano-powder by co-precipitaion method,” Mater. Res. Bull., 40 (2005) 1279-1285.
    [7] N.J. Hess, G.D. Maupin, L.A. Chick, D.S. Sunberg, D.E. McCreedy, and T.R. Armstrong, “Synthesis and crystallization of yttrium-aluminium garnet and related compounds,” J. Mater. Sci., 29 (1994) 1873-1878.
    [8] K.T. Pillai, R.V. Kamat, V.N. Vaidya, and D.D. Sood, “Synthesis of yttrium aluminum garnet by the glycerol route,” Mater. Chem. Phys., 44 (1996) 255-260.
    [9] J.J. Kinsley, K. Suresh, and K.C. Patil, “Combustion synthesis of fine particle rare earth orthoaluminates and yttrium aluminum garnet,” J. Solid State Chem., 87 (1990) 435-442.
    [10] S. Ramanathan, M.B. Kakade, S.K. Roy, and K.K. Kutty, “Processing and characterization of combustion synthesized YAG powders,” Ceram. Inter., 29 (2003) 477-484.
    [11] M. Nyman, J. Caruso, and M.J. Hampden-Smith, “Comparison of solid-state and spray-pyrolysis synthesis of yttrium aluminate powders,” J. Am. Ceram. Soc., 80 [5] (1997) 1231-1238.
    [12] Y.C. Kang, I.W. Lenggoro, S.B. Park, and K. Okuyama, “YAG: Ce phosphor particles prepared by ultrasonic spray pyrolysis,” Mater. Res. Bull., 35 (2000) 789-798.
    [13] D. Viechnicki and J.L. Caslavsky, “Solid-state formation of Nd: Y3Al5O12 (Nd: YAG),” Am. Ceram. Soc. Bull., 58 [8] (1979) 790-791.
    [14] A. Ya. Neiman, E.V. Tkachenko, L.A. Kvichko, and L.A. Kotok, “Conditions and mecromechanism of the solid-phase synthesis of yttrium aluminates,” Russ. J. Inorg. Chem., 25 [9] (1980) 1294-1297.
    [15] V.B. Glushkova, V.A. Krzhizhanovskaya, O.N. Eggorova, Yu. P. Udalov, and L.P. Kachalova, “Interaction of yttrium and aluminum oxides,” Inorg. Mater. (Engl. Transl.), 19 [1] (1983) 80-84.
    [16] K. Ohno and T. Abe, “Effects of BaF2 on the synthesis of the single-phase cubic Y3Al5O12:Tb,” J. Electrochem. Soc., 133 [3] (1986) 638-643.
    [17] S. Kuboniwa, T. Hoshina, T. Narahara, and M. Kanamaru, “Effects of comminution on the luminescence of phosphors,” J. Electrochem. Soc., 120 [12] (1973) 1734-1741.
    [18] A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc., 78 [4] (1995) 1033-1040.
    [19] A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical scattering centers in polycrystalline Nd:YAG laser,” J. Am. Ceram. Soc., 80 [6] (1997) 1517-1522.
    [20] J. McKittrick, L.E. Shea, C.F. Bacalski, and E.J. Bosze, “The influence of processing parameters on luminescent oxides produced by combustion synthesis,” Displays, 19 (1999) 169-172.
    [21] C. He, Y.-F. Guan, L.-Z. Yao, W.-L. Cai, X.-G. Li, and Z. Yao, “Synthesis and photoluminescence of nano-Y2O3:Eu3+ phosphors,” Mater. Res. Bull., 38 (2003) 973-979.
    [22] T. Takamori and L. D. David, “Controlled nucleation for hydrothermal growth of yttrium-aluminum garnet powders,” Am. Ceram. Soc. Bull., 65 [9] (1979) 1282-1286.
    [23] D. F. K. Hennings, B. S. Schreinemacher, and H. Schreinemacher, “Solid-state preparation of BaTiO3-based dieletrics, using ultrafine raw materials,” J. Am. Ceram. Soc., 84 [12] (2001) 2777-2782.
    [24] M. Rössel, H.-R. Höche, H. S. Leipner, D. Völtzke, H.-P. Abicht, O. Hollricher, J. Müller, and S. Gablenz, “Raman microscopic investigations of BaTiO3 precursors with core-shell structure,” Anal. Bioanal. Chem., 380 (2004) 157-162.
    [25] M. T. Buscaglia, M. Bassoli, and V. Buscaglia, “Solid-state synthesis of ultrafine BaTiO3 powders from nanocrystalline BaCO3 and TiO2,” J. Am. Ceram. Soc., 88 [9] (2005) 2374-2379.
    [26] A. Ubaldini, V. Buscaglia, C. Uliana, G. Costa, and M. Ferretti, “Kinetics and mechanism of formation of barium zirconate from barium carbonate and zirconia powders,” J. Am. Ceram. Soc., 86 [1] (2003) 19-25.
    [27] A. Beauger, J. C. Mutin, and J. C. Niepce, “Synthesis reaction of metatitanate BaTiO3- Part 2 Study of solid-solid reaction interfaces,” J. Mater. Sci., 18 (1983) 3543-3550.
    [28] J.R. González-Velasco, R. Ferret, R. López-Fonseca, and M.A. Gutiérrez-Ortiz, “Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction,” Powder Tech., 153 (2005) 34-42.
    [29] J.M. Rivas Mercury, A.H. De Aza, and P. Pena, “Synthesis of CaAl2O4 from powders: Particle size effect,” J. Euro. Ceram. Soc., 25 (2005) 3269-3279.
    [30] R. Yanagawa, M. Senna, C. Ando, H. Chazono, and H. Kishi, “Preparation of 200 nm BaTiO3 particles with their tetragonality 1.010 via a solid-state reaction preceeded by agglomeration-free mechanical activation,” J. Am. Ceram. Soc., 90 [3] (2007) 809-814.
    [31] L. Wen, X. Sun, Z. Xiu, S. Chen, and C.-T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Euro. Ceram. Soc., 24 (2004) 2681-2688.
    [32] C. Klein and B. Butrow, The manual of mineral science, 23th ed. John Wiley & Sons, USA, 2008, pp. 439.
    [33] H.S. Yoder and M.L. Keith, “Complete substitution of aluminum for silicon: the system 3MnO•Al2O3•3SiO2-3Y2O3•5 Al2O3,” Am. Mineral., 36 [7/8] (1951) 519-533.
    [34] 余昭蓉,掺加稀土元素鋁酸釔螢光體之合成與特性鑑定,交通大學應用化學研究所,碩士論文,1997年。
    [35] I. Warshaw and R. Roy, “Stable and metastable equilibria in the systems Y2O3-Al2O3 and Gd2O3-Fe2O3,” J. Am. Ceram. Soc., 42 [9] (1959) 434-438.
    [36] B. Cockayne, “The uses and enigmas of the Al2O3-Y2O3 phase system,” J. Less-comm. Metals, 114 (1985) 199-206.
    [37] J.S. Abell, I.R. Harris, B. Cockayne, and B. Lent, “An investigation of phase stability in the Y2O3-Al2O3 system,” J. Mater. Sci., 9 (1974) 527-537.
    [38] G.T. Adylov, G.V. Voronov, E.P. Mansurova, L.M. Sigalov, and E.M. Urazaeva, “The Y2O3-Al2O3 system above 1473K,” Zhur. Neorg.Khim., 33 (1988) 1867-1869.
    [39] M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew, and W.T. Thompson, “High temperature neutron diffraction study of the Al2O3-Y2O3 system,” J. Euro. Ceram. Soc., 26 (2006) 3515-3524.
    [40] G. Xia, S. Zhou, J. Zhang, and J. Xu, “Structural and optical properties of YAG: Ce3+ phosphors by sol-gel combustion method,” J. Crystal Growth, 279 (2005) 357-362.
    [41] I. Matsubara, M. Paranthaman, S.W. Allison, M.R. Cates, D.L. Beshears, and D.E. Holcomb, “Preparation of Cr-doped Y3Al5O12 phosphors by heterogeneous precipitation methods and their luminescent properties,” Mater. Res. Bull., 35 (2000) 217-224.
    [42] A.E. Zhukovskaya and V.I. Strakhov, “Influence of the molar ratio of Y2O3 to Al2O3 on the kinetics of synthesis of yttrium aluminates,” Zh. Prikladnoi Khimii, 48 (1975) 1125-1127.
    [43] M.-S. Tsai, W.-C. Fu, and G.-M. Liu, “Effect of pre-aging pH on the formation of yttrium aluminum garnet powder (YAG) via the solid state reaction method,” J. Alloys Comp., 440 (2007) 309-314.
    [44] M.V. Kniga, T.G. Mikhaleva, and M.N. Rivkin, “Interaction in the yttrium oxide-alumina system,” Russ. J. Inorg. Chem., 17 [6] (1972) 903-905.
    [45] R.S. Hay, “Phase transformation and microstructure evolution in sol-gel derived yttrium- aluminum garnet films,” J. Mater. Res., 8 [3] (1993) 578-604.
    [46] J.-R. Lo and T.-Y. Tseng, “Phase development and activation energy of the Y2O3-Al2O3 system by a modified sol-gel process,” Mater. Chem. Phys., 56 (1998) 56-62.
    [47] O. Castelein, B. Soulestin, J.P. Bonnet, and P. Blanchart, “The influence of heating rate on the thermal behaviour and mullite formation from kaolin raw material,” Ceram. Inter., 27 (2001) 517-522.
    [48] S. Shimada, K. Soejima, and T. Ishii, “Influence of particle size of α-Fe2O3 on the formation of ZnFe2O4 and the implications of a characteristic surface texture of the ferrite phase formed on α-Fe2O3 particles,” Reactivity of Solids, 8 (1990) 51-61.
    [49] A. Putnis, Introduction to mineral sciences, Cambridge University Press, New York, USA, 1993.
    [50] W.E. Brown, D. Dollimore, and A.K. Galwey, Reactions in the Solid State (in Comprehensive Chemical Kinetics Vol. 22), ed. by C.H. Bamford and C.F.H. Tipper, Elsevier/ North-Holland Inc., New York, 1980, pp. 78.
    [51] H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12 elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int., 33 (2007) 711-714.
    [52] J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A.A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics- a new generation of solid state laser and optical materials,” J. Alloys Comp., 341 (2002) 220-225.
    [53] Y. Rabinovitch, D. Tétard, M.D. Faucher, and M. Pham-Thi, “Transparent polycrystalline neodymium doped YAG: synthesis parameters, laser efficiency,” Opt. Mater., 24 (2003) 345-351.
    [54] J.-G. Li, T. Ikegami, J.-H. Lee, and T. Mori, “Low-temperature fabrication of transparent yttrium aluminum garnet (YAG) ceramics without additives,” J. Am. Ceram. Soc., 83 [4] (2000) 961-963.
    [55] H. Schmalzried, Solid State Reactions, Academic Press, Inc., New York, 1974, pp. 99.
    [56] 蔣鎮宇,固態反應法合成YAG過程之途徑研究,成功學資源工程研究所,碩士論文,中華民國九十七年。
    [57] 賴佳芸,氧化釔粉末粒徑對YAG生成活化能之影響,成功學資源工程研究所,碩士論文,中華民國九十七年。
    [58] 蔡振宏,原料粒徑比對固態反應合成YAG的影響,成功學資源工程研究所,碩士論文,中華民國九十八年。
    [59] J. D. Hancock and J. H. Sharp, “Method of comparing solid-state kinetic data and its application to the decomposition of Kaolinite, Brucite, and BaCO3,” J. Am. Ceram. Soc., 55 [2] (1972) 74-77.
    [60] J. Qin, R. Yang, G. Liu, M. Li, and Y. Shi, “Grain growth and microstructural evolution of yttrium aluminum garnet nanocrystallites during calcination process,” Mater. Res. Bull., 45 (2010) 1426-1432.

    無法下載圖示 校內:2012-09-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE